CS 598CM: ML for Compilers and Architecture
Instructor: Charith Mendis
Brief Announcements

- **Paper Selections:** Due on *today*, presentations start *Sept 14th*
- **Paper Reviews:** see the website for instructions; first due on *Sept 12th*
- **Resources and tutorials**
- **Piazza:** (optional) on-line discussions of papers
- **COVID19:** If you feel sick, please stay at home and you can join the class virtually using Zoom
Paper Reviews

• Submit a 250-750 word summary of the paper including
 • Problem definition
 • Key contributions and solution overview
 • Evaluation summary
 • Strengths and weaknesses (limitations) of the technique(s)

• Let me know how you would extend the paper in 1-2 sentences (Can be vague and creative) => May be project ideas :)}
Paper Presentation

- Presentations start on **September 14th**; assignments would be available on September 8th

- **Week before:** Meet instructor in person or virtually to discuss the presentation plan (compulsory!)
 - Use this time to ask questions and discuss the outline
 - Presentation slides are due when reviews are due for that class
 - Submit the final slides using the form on website
 - You can use office hours for this or schedule a meeting with me

- **During the class:** Be present in class either in person or virtually (compulsory!)
 - Deliver a 20-30 min presentation on the paper
 - Answer questions for the following 15 min
 - Final 30 min for open discussion on the paper (lead by the instructor)
Paper Presentation

• **After class:** Summarize the discussion of the paper within 250 - 750 words
 • Submit the summary within 2 days at the end of the class
 • Update the same form to submit the summary (edit the same entry)

• The presentation should include
 • Problem definition
 • Motivation: Why is this an important problem?
 • Outline the high-level solution
 • Illustrate the solution
 • Evaluation: What worked and what didn’t
 • Related Work: Put the solution in context of other research
 • Strengths and weaknesses
 • How would you extend this work?
Paper Presentation

- September 14th and 16th presentations
 - 15-30min presentation
 - Meet the instructor on September 9th to discuss the plan; email me to setup a time to meet in person or virtually
Introductions!

- Let’s get to know each other

- No specific format
 - Name
 - Department
 - Advisor
 - Research Project (if any)

- Please drop by during office hours if you want to discuss exciting class projects! Potentially leading to publication!
Recap

- Domain Specific Languages and Optimizations
 - XLA - Operator Fusion, Graph Rewrites
 - Graph Processing
- ML in Architecture
 - Branch Prediction
Lecture 5:
Machine Learning Techniques
Types of Learning

- Supervised Learning (labelled data)
- Unsupervised Learning
- Semi-supervised Learning
- Reinforcement Learning
Types of Learning

- Supervised Learning
- Unsupervised Learning (unlabelled data)
- Semi-supervised Learning
- Reinforcement Learning
Types of Learning

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning
- Reinforcement Learning

Learning using a **small number of labelled data** and a **large number of unlabelled data**

Community Detection Node classification

Karate club graph, colors denote communities obtained via modularity-based clustering (Brandes et al., 2008).
Types of Learning

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning
- Reinforcement Learning

No labelled data; learn from experience

Choose a “valid” action

State

Iterate

New State

Reward (Win / Loss)
Examples from Systems

- Supervised Learning - Performance models, Code completion tasks, etc.
- Unsupervised Learning - Large code models (Github Co-pilot)
- Semi-supervised Learning
- Reinforcement Learning - Code Optimization, Design Space Exploration
Machine Learning Simplified!

Data → Model → Prediction

- Images
- Program Code
- Sentences
- Robot State
- Label
- Performance
- Translation
- Action

Possibly a Neural Network
(A non-linear function with tunable parameters)
Perceptrons

\[\text{Output} = \begin{cases}
0 & \text{if } \sum_j w_j x_j \leq \text{threshold} \\
1 & \text{if } \sum_j w_j x_j > \text{threshold}
\end{cases} \]

\(x_i \) - binary input / real input
\(w_i \) - real weights
Output - binary output

Where’s the non-linearity?

Can only separate linearly separable regions

Michael Nielsen, “Neural Networks and Deep Learning”, Determination Press 2015
Add more layers and perceptrons?

Is it more powerful than a single perceptron?
Now it is non-linear; yes
Each layer makes decisions about high-level concepts

How do we set the weights?
Let’s devise an algorithm to learn them
Smooth Neurons

Instead of step function

Sigmoid Activations

Rectified Linear Unit Activations
Learning

• The process of learning weights of each neuron connection

• Use gradient descent since NNs are differentiable

\[W_{i+1} = W_i - \eta \nabla F(W_i) \]

\[\eta - \text{Learning Rate} \]

\[F(\cdot) - \text{Neural Network Function} \]

• Use better variants with better convergence properties (e.g. Stochastic Gradient Descent, ADAM)

Multilayer perceptrons

- Same as Feedforward fully connected neural networks
- Uses smooth activations to build a multilayer connection of neurons
How powerful are NNs?

• Neural Networks are function approximations (differentiable)

• Do you need plenty of hidden layers to achieve more capacity?

 • **Theoretically No**: Universal Approximation Theorem

 • Informally, it says one hidden layer is sufficient to approximate any continuous function

 • It does not say about *learnability* (how to set the weights)

• **In practice**, different network topologies with deeper networks are needed to learn better approximations for problems at hand
Quick Overview of Different NN topologies
Convolutional Neural Networks

- Used in the image domain and mimics convolution filters on parts of the image
- Learnable parameters are weights of these convolution filters
- Usually have multiple convolutional layers and max pooling in between

![Convolutional Neural Network Diagram](image-url)
Convolutional Neural Networks
Convolutional Neural Networks
Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Krizhevsky et. al “ImageNet Classification with Deep Convolutional Neural Networks”
What is a convolution?
What is a convolution?

Weighted sum of input values \(\sum W_i x_i \)
What is a convolution?

Weighted sum of input values: $\sum W_i x_i$

- 3D convolutions
- Depth-wise convolutions (grouped)
- Dilated Convolutions
- Padded Convolutions
Recurrent Neural Networks

- Neural network topology with history

\[h_t = RNN(Vh_{t-1}, Ux_t) \]
Recurrent Neural Networks

• Main use case: when you need to remember across time steps

• Two main problems with training vanilla RNNs
 • Handling long term dependencies can be tricky
 • Vanishing or exploding gradients during training

• Two types of popular RNN cells that alleviate these problems

 • Long Short Term Memory cells and Gated Recurrent Units (https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
Use case: Machine Translation

Sequence to Sequence Learning with Neural Networks
Graph Neural Networks

- Works on graph structured data
- Main goal is to find representations for nodes or edges (node or edge embeddings) that can be used for many downstream tasks

Embeddings

<table>
<thead>
<tr>
<th>'cat'</th>
<th>0.5</th>
<th>0.8</th>
<th>0.7</th>
<th>0.9</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>'dog'</td>
<td>0.3</td>
<td>0.4</td>
<td>0.7</td>
<td>0.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Word Embeddings

Node Embeddings
Graph Neural Networks

Find node embeddings for

- Protein folding
- Node clustering
- Variable inference

Protein Interface Prediction using Graph Convolutional Networks

Alex Fort¹
Department of Computer Science
Colorado State University
Fort Collins, CO 80525
sour@colostate.edu

Jonathon Byrd¹
Department of Computer Science
Colorado State University
Fort Collins, CO 80525
jbyrd@colostate.edu

Baha Shariat¹
Department of Computer Science
Colorado State University
Fort Collins, CO 80525
bshatr@cs.colostate.edu

Asa Ben-Hur¹
Department of Computer Science
Colorado State University
Fort Collins, CO 80525
asa@cs.colostate.edu

Spectral Clustering with Graph Neural Networks for Graph Pooling

Filippo Maria Bianchi¹ *, Daniele Grattarola¹ *, Cesare Alippi²,³

Predicting drug–target binding affinity with graph neural networks

© Thin Nguyen, Hang Le, © Thomas P. Quinn, Thuc Le, Svetla Venkatesh
doi: https://doi.org/10.1101/684662
Computational Model

Bulk Synchronous Parallel Style

All nodes are updated at layer (L) from layer (L-1) values in parallel
Computational Model

Bulk Synchronous Parallel Style

All nodes are updated at layer (L) from layer (L-1) values in parallel
Updates from a neighborhood of nodes (message passing)
Computational Model

Bulk Synchronous Parallel Style

All nodes are updated at layer (L) from layer (L-1) values in parallel
Updates from a neighborhood of nodes (message passing)
Barrier until all nodes are updated

Neighborhood
Message
Aggregation
Update
Graph Convolutional Network (GCN)

Neighborhood = All single-hop

Message
Fixed importance
Learnable Weights
\[d = \frac{1}{\sqrt{d_{ii}d_{jj}}} \]

\[d h_u^{(l)} \cdot W(l) \]

Aggregation
Sum (fixed)

Update
\[
h_v^{(l+1)} = \sigma \left(\sum_{u \in \text{ne}(v)} \frac{1}{\sqrt{d_{ii}d_{jj}}} h_u^{(l)} \cdot W(l) \right)
\]

Suitable for Transductive Tasks

Semi-Supervised Classification with Graph Convolutional Networks (ICLR 2017)
GraphSAGE

Generalization of GCN

Neighborhood = All single-hop

Message
Fixed importance \(d = 1 \)
Learnable Weights \(W(l) \)
Subsample nodes

Aggregation
+, pool, LSTM

Update (concatenate current node embedding)

\[
h_v^{(l+1)} = \sigma \left(\left(h_v^{(l)} || \text{AGG}(h_u^{(l)} | u \in N(v)) \right) . W^{(l)} \right)
\]

Inductive Representation Learning on Large Graphs (NeurIPS 2017)
Transformers Primer

Easily parallelizable and can distribute work

Attention Is All You Need (NeurIPS 2017)
Next Lecture

- Genetic Algorithms
- Reinforcement Learning basics
- Auto-tuning and Design Space Exploration
Any Questions?