CS 598CM: ML for Compilers and Architecture

Instructor: Charith Mendis
Brief Announcements

• **Recordings:** Lecture 3 recording available

• **Paper Selections:** Due on **Sept 7th**, presentations start **Sept 14th**

• **Paper Reviews:**
 • Due for each paper 2 days prior to the discussion date
 • Instructions will emailed before class next week

• **Resources and tutorials:** Will be up by Friday, also we will have piazza!
Recap

- Anatomy of a compiler optimization pass
- Domain Specific Languages
Lecture 4:
DSLs + ML in Architecture
Deep Learning Stack

Workload | Language | Compiler | Hardware

TensorFlow
Computational Graphs

- A data-flow graph with tensor operations
Example: Inception

Can grow to 1000s of nodes

Szegedy et. al “Going Deeper with Convolutions”
Optimization: Operator Fusion

Zhou et. al “Transferable Graph Optimizers for ML Compilers”
HW: Tensor Processing Unit

Jouppi et. al “In-Datacenter Performance Analysis of a Tensor Processing Unit”
HW: Simplified Version

- Scratch pads are not caches
- Software Programmable
- Uses Direct Memory Access transfers

Size: scratch pad <<< HBM
Latency: scratch pad <<< HBM
Programming Model

- K1 executes
- Writes back results to HBM
- K2 executes
- Writes back results to HBM
- Fused Operator Executes
- Writes back results to HBM
- Intermediates can be stored in HBM or Scratchpad
Operator Fusion

Which is faster? Usually 2
Operator Fusion

1. Mul → Reduce → Sigmoid

2. Mul → Reduce → Sigmoid

Written to HBM
Operator Fusion

Fusion is not always profitable!
Typical type II Optimization
Operator Fusion

HLO IR

Sample HLO ops
- Elementwise math
 - Add, Tanh, Map
- Specialized math for neural nets
 - Dot, Convolution, Reduce
- Re-organize data
 - Reshape, Broadcast, Concat, Tuple
- Control flow
 - While, Call, CustomCall
- Data transfer
 - Parameter, Constant

Sample data types
- Primitive types
 - PRED
 - F16
 - F32
- Composite types
 - array: F32[2,3], F16[]
 - tuple: TUPLE(F32[16], F16)
Graph Simplifications

- expressed as computational graph rewrites

TASO [SOSP’19]

Figure 4. RL-based placement of Neural MT graph. Top: encoder, Bottom: decoder. Devices are denoted by colors, where the transparent color represents an operation on a CPU and each other unique color represents a different GPU. This placement achieves an improvement of 19.3% in running time compared to the fine-tuned expert-designed placement.

11/04 Reading
Mirhoseini et. al “Device Placement Optimization with Reinforcement Learning”
Graph Computing

• Models computations on graph structured data

• Vertex centric or Edge centric

• Plenty of domain specific optimizations
 • Push / Pull optimizations
 • Vertex Reordering
 • Graph Segmentation etc…
Optimizations on Graphs

Graph Processing

Better than Frequency-based Reordering
#hits: 4
#misses: 3

Cache
#hits: 5
#misses: 2
Auto-tuning for graphs

- We have a separate lecture on auto-tuning

- Challenging
 - High input sensitive (e.g. power-law graphs vs road graphs)
 - Dependent on the graph algorithm (e.g. Page rank vs BFS)
 - Dependent on hardware (e.g. GPUs vs CPUs)

- 9/30: Meng et. al “A pattern based algorithmic autotunes for graph processing on GPUs”
ML in Architecture
Memory Subsystem

• Usually CPU arithmetic capacity is far greater than the memory bandwidth or latency

• We can optimize memory performance by exploiting
 • Spatial Locality
 • Temporal Locality

• This gave rise to caches and cache hierarchies
Caches

Size: Registers < L1 cache < L2 cache < L3 cache < DRAM
Latency: Registers < L1 cache < L2 cache < L3 cache < DRAM
Caches

- Hold a portion of the data from memory for faster access
- The space in caches is limited, so determining what data it holds is important
- We want to maximize cache-hit rate
- Cache replacement policies are important in determining the cache-hit rate

12/02 - we are going to discuss learned replacement policies
ML in Architecture: good idea?

- Depends
 - Assume you are including a Neural Network (NN) in HW
 - Implementing NN in takes area
 - Adds execution latency / clock cycles get longer
 - May be a too heavy of a hammer
 - Designing new hardware: Great Choice!
 - We are reading papers on 11/09 and 11/11 about Design Space Exploration
Branch Prediction

- Determines which instructions to fetch on a conditional branch

- If wrong instructions are fetched and executed entire processor pipeline should be flushed — Costly!

- Early work on using ML for branch prediction, Jimenez and Lin "Dynamic Branch Prediction with Perceptrons"

HPCA 2019 Test of Time award
Dynamic Branch Prediction with Perceptrons

- Why perceptrons? Can be efficiently implemented in hardware

\[y = w_0 + \sum_{i=1}^{n} x_i w_i. \]

('PERSONAL TECH')

'Neural network' spotted deep inside Samsung's Galaxy S7 silicon brain
Secrets of Exynos M1 cores spilled

https://www.theregister.com/2016/08/22/samsung_m1_core/
Dynamic Branch Prediction with Perceptrons

\[y = w_0 + \sum_{i=1}^{n} x_i w_i. \]

if \(\text{sign}(y_{out}) \neq t \) or \(|y_{out}| \leq \theta \) then
 for \(i := 0 \) to \(n \) do
 \(w_i := w_i + tx_i \)
 end for
end if
Dynamic Branch Prediction with Perceptrons

if $\text{sign}(y_{out}) \neq t$ or $|y_{out}| \leq \theta$ then
 for $i := 0$ to n do
 $w_i := w_i + tx_i$
 end for
end if

If the predictor is right

No training needed!

If the predictor is wrong or within threshold

W_i ↑ When t and x_i same sign

W_i ↓ When t and x_i opposite signs
Any Questions?