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Course

So far:
• Dataflow analysis (examples and theory)
• Dependency analysis
• SSA (sparse dataflow analysis via def-use chains)

Coming up next:
• Pointer analysis (generalize the dependence relationship)
• Interprocedural analysis (how to analyze function calls?)
• Vectorization 
• ML in compilers



POINTER ANALYSIS

The slides adapted from Vikram Adve



Pointer Analysis

Pointer and Alias Analysis are fundamental to 
reasoning about heap manipulating programs (pretty 
much all programs today). 

• Pointer Analysis:
• What objects does each pointer points to? 
• Also called points-to analysis

• Alias Analysis:
• Can two pointers point to the same location? 
• Client of pointer analysis



Example

X = 1
P = &X
*P = 2
return X

// What is the value of X? 



Aliases
Consider references r1 or r2,
• may be of the form “x” or “*p” “**p”, “(*p)->q->i”…
• We assume C notation for dereferencing pointers (*, ->)

Alias: r1 are r2 are aliased if the memory locations accessed by 
r1 and r2 overlap.

Alias Relation: A set of ordered pairs {(ri, rj)} denoting aliases 
that may hold at a particular point in a program.
• Sometimes called a may-alias relation.

May or Must: A kind of aliasing if it happens optionally or always
• May: e.g., depending on the control flow: if (b) { p = &q; }
• Must: determined that they always represent aliases



Aliases
We look at the language that extends the simple expressions 
with the additional pointer-like structures: 
  p := &x 
          | p := q 
          | *p := q 
          | p := *q

Consider references r1 or r2,
• may be of the form “x” or “*p” “**p”, “(*p)->q->i”…
• We assume C notation for dereferencing pointers (*, ->)



Example

X = 1
P = &X           
Q = P
*P = 2



Example

X = 1
P = &X          
Q = P
*P = 2

// (*P, X)
// { (*P, X), (*Q, X), (*P, *Q) }

Aliasing pairs

Alias: r1 are r2 are aliased if the memory 
locations accessed by r1 and r2 overlap.



Points-To Facts
Points-to Pair: pair (r1, r2) denoting that one of the memory 
locations of r1 may hold the address of one of the memory 
locations of r2.
• Also written: r1 → r2, means“r1 points to r2”.

Points-to Set: {(ri, rj)} : A set of points-to pairs that may hold at a 
particular point in a program.

Points-To Graph: A directed graph where 
• Nodes represents one or more memory objects; 
• Each Edge p → q means some object in the node p may hold a 

pointer to some object in the node q.



Example

X = 1
P = &X          
Q = P
*P = 2

// (P, X)
// { (P, X), (Q, X) }

Points-to pairs

Points-to Pair: pair (r1, r2) denoting that one 
of the memory locations of r1 An ordered may 
hold the address of one of the memory 
locations of r2.



Example

X = 1
P = &X          
Q = P
R = Q

// (P, X)
// { (P, X), (Q, X) }

Points-to pairs

Points-to Pair: pair (r1, r2) denoting that one 
of the memory locations of r1 An ordered may 
hold the address of one of the memory 
locations of r2.

// { (P, X), (Q, X), (R,X) }

“Short notation”: vs the long one that 
would list all the aliases. 



Challenges of Points-To Analysis

• Pointers to pointers, which can occur in many ways: take 
address of pointer; pointer to structure containing pointer; 
pass a pointer to a procedure by reference

• Aggregate objects: structures and arrays containing pointers
• Recursive data structures (lists, trees, graphs, etc.) closely 

related problem: anonymous heap locations
• Control-flow: analyzing different data paths
• Interprocedural: a location is often accessed from multiple 

functions; a common pattern (e.g., pass by reference)
• Compile-time cost

• Number of variables, | V |, can be large
• Number of alias pairs at a point can be O(| V |2)



Common Simplifying Assumptions

Aggregate objects: arrays (and perhaps structures) 
containing pointers

Simple solution: Treat as a single big object!
• Commonplace for arrays.
• Not a good choice for structures? 

• See Intel Paper (Ghiya, Lavery & Sehr, PLDI 2001)

• Pointer arithmetic is only legal for traversing an array:

 q = p ± i and q = &p[i] are handled the same as q = p



Common Simplifying Assumptions

Recursive data structures (lists, trees, graphs, …)

Solution: Compute aliases, not “shape”
• Don’t prove something is a linked-list or a binary 

tree (leave that for shape analysis)
• k-limiting: only track k or fewer levels of 

dereferencing
• Use simplified naming schemes for heap objects 

(later slide)



Common Simplifying Assumptions

Control-flow: analyzing different data paths blows up 
the analysis time/space

Solution(?): Could ignore the issue and compute a 
single common result for any path!

No consensus on this issue! (Will discuss later)



Naming Schemes for Heap Objects
The Naming Problem: Example 1

int main() {
   // Two distinct objects
   T* p = create(n);
   T* q = create(m);
}

T* create(int num) {
   // Many objects allocated here
   return new T(num);
}

Q. Should we try to distinguish the objects created in main()?



Naming Schemes for Heap Objects

The Naming Problem: Example 2

T* makelist(int len) {
  T* newObj = new T; // Many distinct objects 
                     // allocated here
  newObj->next = (--len == 0)? NULL : 
                               makelist(len);
}

Q. Can we distinguish the objects created in makelist()?



Possible Naming  Abstractions

H0 : One name for the entire heap

HT : One name per type T (for type-safe languages)

HL : One name per heap allocation site L (line number)

HC : One name per (acyclic) call path C (“cloning”)

HF : One name per immediate caller F or call-site 
       (“one-level cloning”)



Flow-Sensitivity of Analysis

Def. A flow-sensitive analysis is one that computes a distinct result 
for each program point. A flow-insensitive analysis generally computes 
a single result for an entire procedure or an entire program.

A flow-insensitive algorithm effectively 
ignores the order of statements!

int f(T q, T r){
  T* p;
  …
  p = &q;
  …
  p = &r;
}

Flow Sensitive

p q

p r

Flow Insensitive

p q

r



Flow-Sensitivity of Analysis

Def. A flow-sensitive analysis is one that computes a distinct result 
for each program point. A flow-insensitive analysis generally computes 
a single result for an entire procedure or an entire program.

A flow-insensitive algorithm effectively 
ignores the order of statements!

int f(T q, T r){
  T* p;
  if (...) 
     p = &q;
  else
     p = &r;
}

Flow Sensitive

p q

p r

Flow Insensitive

p q

r



Flow-Sensitivity of Analysis

Pointer Analysis
• Flow-sensitive : At program point n, compute alias pairs <a, b> 

that may hold at n for some path from program entry to n.
• Flow-insensitive : Compute all alias pairs <a, b> such that a 

may be aliased to b at some point in a program (or function).

Important special cases
• Local scalar variables: SSA form gives flow-sensitivity
• Malloc or new:  Allocates “fresh” memory, i.e., no aliases
• Read-only fields: e.g., array length



Realizable Paths
Definition: Realizable Path
A program path is realizable iff every procedure call on the path 
returns control to the point where it was called (or to a legal 
exception handler or program exit)

Whole-program Control Flow Graph?
Conceptually extend CFG to span whole program:
• split a call node in CFG into two nodes: CALL and RETURN
• add edge from CALL to ENTRY node of each callee
• add edge from EXIT node of each callee to RETURN
Problem: This produces many unrealizable paths

Focusing only on realizable paths requires 
context-sensitive analysis



Context-Sensitivity of Analysis

Def. A context-sensitive interprocedural analysis computes results 
that may hold only for realizable paths through the program. 
Otherwise, the analysis is context-insensitive.

T* identity(T* p) {
  return p;
}

void f1() {
  T* p1 = new T; // Object o1
  T* q1 = identity(p1); 
}

void f2() {
  T* p2 = new T; // Object o2
  T* q2 = identity(p2); 
}

Context SensitiveContext Insensitive

q1 o1q1 o1

o2

q2 o2q2 o1

o2



Context-Sensitivity of Analysis
Pointer Analysis
Apply the definitions directly using points-to pairs <a, b>.
But important variations exist:
• Heap cloning vs. no cloning: Cloning gives greater context-

sensitivity
• Bottom-up vs. top-down: Does final result for a procedure 

include only “realizable” behavior from all contexts?
• Handling of recursive functions: Does analysis retain context-

sensitivity within SCCs in the call graph?

Object Sensitivity: Context represents each allocation site. 
Typically offers quite precise context analysis

[Parameterized Object Sensitivity for Points-to and Side-Effect Analyses for Java; 
Milanova et al. ISSTA 2002]



Field-Sensitivity of Analysis
Def. A field-sensitive analysis is one that tracks distinct behavior for 
individual fields of a record type. Otherwise, it is field-insensitive

Challenges
• Complexity: For certain analysis techniques, converts linear 

representation to worse (perhaps even exponential)
• Non-type-safe programs: May have to track behavior at every byte 

offset within the structure (not just each field)

int f(T q, T r) {
  p.a = &q;
  p.b = &r;
}

Field Sensitive

q

r

p.a

p.b

Field Insensitive

q

r

p.a

p.b



Flow Insensitive Algorithms

3 popular algorithms
• Any address
• Andersen, 1994
• Steensgard, 1996

Acceptable precision in practice for 
compiler optimization, however perhaps 
insufficient for static analysis approaches 
for security, reliability, or bug finding



Any Address Analysis

• Single points-to set: contains all variables whose 
address is taken, passed by reference, etc.

• Any pointer may point to any variable in this set

• Simple, fast, linear-time algorithm

• Common choice for function pointers, and for 
global variables, e.g., for initial call graph

• Can refine with splitting by types



Example 1

void main() {
   T *p, *q, *r;
   T t;

o1:p = new T;
   q = &t;
   r = q;
}

// {p} -> {o1}
// {p,q} -> {o1, t}
// {p,q,r} -> {o1, t}



Andersen’s Algorithm

• Generally the most precise flow- and context-insensitive 
algorithm

• Compute a single points-to graph for entire program
• Refinement by Burke: Separate points-to graph for each 

function
• Cost is O(n3) for program with n assignments

• McAlister, On the complexity analysis of static analyses 
(SAS’99)

• Sridharan and Fink, The Complexity of Andersen’s Analysis in 
Practice (SAS’09)



Andersen’s Algorithm: Conceptual

Initialize: Points-to graph with a separate node per variable

Iterate until convergence:
At each statement, evaluate the appropriate rule:
 Form   Action
 p = &x  Add p → x
 p = q   ∀x : if q → x, add p → x
 *p = q   ∀x, r: if q → x and p → r, add r → x
 p = *q   ∀x, r: if q → x and x → r, add p → r



Andersen’s Algorithm: Actual

1. Build initial "inclusion constraint graph" and initial points-to sets
2. Iterate until converged:

• Update constraint graph for new points-to pairs
• Update the points-to sets according to new constraints

Inclusion Constraint Graph: Add constraint for pointer 
assignments (pts is points-to set):

Name   Form     Constraint     Action
Points-to pair p = &x     p Ê {x}            pts(p) U= {x}
Direct constraint p = q     p Ê q               pts(p) U= pts(q)
Indirect constraint *p = q     *p Ê q              for 𝑣 ∈ 𝑝𝑡𝑠(𝑝): 
                                                                           pts(v) U= pts(q)
Indirect constraint p = *q p Ê *q for 𝑣 ∈ 𝑝𝑡𝑠(𝑞):     
                                                                                          pts(p) U= pts(v)



Example 1 Revisited

void main() {
   T *p, *q, *r;
   T t;

o1:p = new T;
   q = &t;
   r = q;
}

// {p} -> {o1}
// {p} -> {o1}, {q} -> {t}
// {r} -> {t}



Example 2

void f(int i) {
   T *p, *q, *r;

o1:p = new T;
o2:q = new T;
   if (i>0)
      r = p;
   else
      r = q;
}

// {p} -> {o1}
// {q} -> {o2}

// {r} -> {o1}

// {r} -> {o1,o2}



Example 3 

// p -> {a}
// s -> {p}
// r -> {a}
// q -> {b}
// s -> {p,q}

Done?

p = &a; 
s = &p; 
r = *s; 
q = &b; 
s = &q; 

// p -> {a}
// s -> {p,q}
// r -> {a, b}
// q -> {b}
// s -> {p,q}

Done?



Andersen’s Algorithm: Cycles

Cycle in constraint graph:
    pts(p) Ê pts(q) Ê pts(r) Ê pts(p)
Þ pts(p) = pts(q) = pts(r) = pts(p)
Þ No need to propagate points-to 
pairs around such cycles!

p

q r

s



Andersen’s Algorithm: Cycles
Cycle in constraint graph:
    pts(p) Ê pts(q) Ê pts(r) Ê pts(p)
Þ pts(p) = pts(q) = pts(r) = pts(p)
Þ No need to propagate points-to pairs around such cycles!

Offline cycle elimination:
• Find cycles due to direct pointer copies (direct constraints)
• Collapse each cycle into a single node,  reduces size of constraint graph 
• But many more cycles can be induced by indirect constraint edges: we 

need cycle elimination during transitive closure ("online“)
“Off-line Variable Substitution for Scaling Points-To Analysis,” Rountev and Chandra, PLDI’00. 
 

Online cycle elimination:
• Fähndrich, Foster, Aiken and Su (PLDI ’98): Cycle elimination is essential 

for scalability.
• Heintze and Tardieu (PLDI 2001): "A million lines of code per second."
• Hardekopf and Lin (PLDI 2007)



Steensgard’s Algorithm
Unification: 
• Conceptually: restrict every node to only one 

outgoing edge (on the fly)
• If p → x and p → y, merge x and y (“unify”)
• All objects “pointed to” by p one equivalence class

A = &B
B = &C
A = &D
D = &E

A B,D C,E



Steensgard’s Algorithm
Unification:  Conceptually: restrict every node to only 
one outgoing edge (on the fly)
• If p → x and p → y, merge x and y (“unify”)
• All objects “pointed to” by p form one equivalence 

class

Algorithm
1. For each statement, merge points-to sets:

p = q:    Merge two equivalence classes (p’s and q’s targets)
     Less expensive than computing points-to iterations
  This may cause other nodes to collapse!

2. Use Tarjan’s “union-find” (disjoint-set) data structure 
to record equivalence classes



Steensgard’s Algorithm
“Union-find” aka Disjoint Set data structure:
• Splits the set of elements into disjoint partitions
• Maintains the partition with every addition
• Operations:

• Find(x): follows parent pointers from x until reaching root (i.e. 
finds the set containing x)

• Union(x,y): 1) finds the roots of x,y; 2) merges the trees by 
connecting the root nodes. (i.e. merges the sets)

• Properties: addition and merge of sets in near constant time, 
i.e. α(n) – inverse Ackerman func. α(n) < 4 even for large n.

Consequence for Steensgard’s analysis: 
• Non-iterative algorithm, almost-linear running time: O(nα(n)) 
• Like Andersen, single solution for the entire program



Steensgard vs. Andersen
Consider assignment p = q, i.e., only p is modified, not q.

Subset-based Algorithms (Anderson’s algorithm is an example)
• Add a constraint: Targets of q must be subset of targets of p
• Graph of such constraints is also called “inclusion constraint graphs”
• Enforces unidirectional flow from q to p

Unification-based Algorithms (Steensgard is an example)
• Merge equivalence classes: targets of p and q must be identical
• Assumes bidirectional flow from q to p and vice-versa

In-between solutions:
• Unification-based Pointer Analysis with Directional Assignment, Das, 

PLDI 2000 – exploits the semantics of C; uses Andersen for top 
pointers, Steensgard elsewhere



Alias Analysis

• Alias analysis is a common client of pointer (points-to) analysis
• Pointer Analysis: What objects does each pointer 

points to? 
• Alias Analysis: Can two pointers point to the same 

location? (i.e., it is possible that *p = *q)
• Once we have performed the pointer analysis, it is trivial to 

compute alias analysis (but not vice versa)

• Two pointers p and q may alias if 
points-to(p) ⋂	points-to(q) ¹	∅



Which Pointer Analysis To Use?
Hind & Pioli, ISSTA, Aug. 2000

Compared 5 algorithms (4 flow-insensitive, 1 flow-sensitive):
• Any address
• Steensgard
• Anderson
• Burke (like Anderson, but separate solution per procedure)
• Choi et al. (flow-sensitive)

Metrics
1. Precision: number of alias pairs
2. Precision of important optimizations: MOD/REF, REACH, LIVE, 

flow dependences, constant prop.
3. Efficiency: analysis time/memory, optimization time/memory

Benchmarks: 23 C programs, including some from SPEC benchmarks



Which Pointer Analysis To Use?
1. Precision:  (Table 2)
• Steensgard much better than Any-Address (6x on average)
• Anderson/Burke significantly better than Steensgard (about 2x)
• Choi negligibly better than Anderson/Burke



Which Pointer Analysis To Use?
2. MOD/REF precision: (Table 2)
• Steensgard much better than Any-Address (2.5x on average)
• Anderson/Burke significantly better than Steensgard (15%)
• Choi very slightly better than Anderson/Burke (1%)



Which Pointer Analysis To Use?
3. Analysis cost:  (Table 5)
• Any-Address, Steensgard extremely fast
• Anderson/Burke about 30x slower
• Choi about 2.5x slower than Anderson/Burke



Which Pointer Analysis To Use?
4. Total cost of analysis + optimizations: (Table 5)
• the client analyses improved in efficiency as the pointer information more precise
• Steensgard, Burke are 15% faster than Any-Address!
• Anderson is as fast as Any-Address!
• Choi only about 9% slower



Analysis Scalability

Derek Rayside, Points-To Analysis (Summary), 2005
https://www.cs.utexas.edu/~pingali/CS395T/2012sp/lectures/points-to.pdf 

More recent: Flow-Sensitive Pointer Analysis for Millions of Lines of Code 
Hardekopf and Lin (CGO’11)

https://www.cs.utexas.edu/~pingali/CS395T/2012sp/lectures/points-to.pdf


Advanced Techniques

• Shape Analysis: discovers and reasons about dynamically 
allocated data structures (e.g., lists, trees, heaps) 

• Escape Analysis: computes which program locations can 
access a pointer (across function boundaries) 

• Datalog: Declarative, constraint-based approach to 
specify analysis, offers pretty good scalability

Pointer Analysis; Yannis Smaragdakis; George Balatsouras, Now Publishing, 2015 



Datalog
Datalog: declarative language with Prolog-like notation
Elements: atoms of the form p(X1, X2, … Xn)
• p is a predicate
• X1, X2, … Xn are variables or constants

Ground atoms: predicate with only constant arguments
• Its value is either true or false

Rules:    H :- B1 & B2 & … & Bn
• H is an atom, B1…Bn are atoms or negations of atoms
• :- is “if”  --- so H is valid if all B1…Bn are valid

Datalog program is a collection of rules. The program is applied to 
a set of ground atoms. The result is the set of ground atoms 
inferred by applying the rules until fixpoint



Datalog Example

Simple Datalog program (from Dragon book):
 

          path(X, Y) :- edge (X, Y)
          path(X,Y) :- path (X,Z) & path (Z, Y)

The meaning of the program: A single edge is a path; a path also exist if there is a path 
between the start point and some other point, and that other point and the end point.

Consider this example: 
• True ground atoms: edge(1,2), edge(2,3), edge(3,4)
• Infer path(1,2), path(2,3), path(3,4) using rule #1
• Infer composite paths using successive application of rule #2



Flow-Insensitive Pointer Analysis
(Dragonbook) Compute:
• Pts(V, H) – the variable V can point to heap object H
• Hpts(H, F, G) – field F of heap object H points to heap object G

Rules constructed by traversing the program:
1. Pts(V, H)       :-  “H:  V = malloc”
 V points to heap loc H if it is allocated at H (say we use line number calling)

2. Pts(V, H)       :-  “V = W” & Pts (W, H)
 V points to H if V points to W and W points to H

3. Hpts(H,F,G)  :-  “V.F = W” & Pts(W, G) & Pts(V,H)
 In stmt V.F=W, field F of object H points to object G if ptr W points to G 

and ptr V points to H

4. Pts(V, H)       :-  “V = W.F” & Pts(W, G) & Hpts(G, F, H) 
 In stmt V=W.F, V points to H if W points to G and field F of G points to H



Context-Sensitive Pointer Analysis
First compute:
• Pts(V, C, H) – the variable V in context C can point to heap object H 
• Hpts(H, F, G) – field F of heap object H points to heap object G
• CSinvokes(S, C, M, D) – the calls site S in context C calls the D 

context of M
Rules constructed by traversing the program:
1. Pts(V, C, H)   :-  “H:  V = malloc” & CSinvokes(H, C, _, _)
 

2. Pts(V, C, H)   :-  “V = W” & Pts (W, C, H)
 

3. Hpts(H,F,G)  :-  “V.F = W” & Pts(W, C, G) & Pts(V,C,H)
 

4. Pts(V, C, H)   :-  “V = W.F” & Pts(W, G) & Hpts(G, F, H) 

5. Pts(V, D, H)   :-  CSinvokes(H, C, M, D) & formal(M,D,V) 
                          & actual(S,C,W) & pts(W,C,H)

If the call site S in context C calls method M of context D, then the formal 
parameters in method M of context D can point to the objects pointed to by 
the actual params in C


