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DEPENDENCE TRANSFORMS

The slides adapted from Vikram Adve



Logistics

• Project 1 results out.
• If you got ‘0’ meet me after the class.

• Midterm marks will be released next week.
• Project 2 proposals

• If you have any doubts email me.
• I will reply by the end of this week.



Motivation
Memory hierarchy optimizations
Goal 1: Improving reuse of data values within loop nest
Goal 2: Exploit reuse to reduce cache, TLB misses

Tiling
Goal 1: Exploit temporal reuse when data size > cache size
Goal 2: In parallel loops, reduce synchronization overhead

Software Prefetching
Goal: Prefetch predictable accesses k iterations ahead

Software Pipelining
Goal: Extract ILP from multiple consecutive iterations

Automatic parallelization Also, auto-vectorization
Goal 1: Enhance parallelism
Goal 2: Convert scalar loop to explicitly parallel
Goal 3: Improve performance of parallel code



Reordering Transformation

Definition. Legal Transformation preserves the meaning of 
that program, i.e., all externally visible outputs are 
identical to the original program, and in identical order.
• We consider two programs equivalent (i.e., the transformation preserving the 

program meaning) if on the same inputs both the original and transformed 
programs, after being executed, produce the same outputs. 

Theorem. A reordering transformation that preserves all 
data dependences in a program is a legal transformation.
For discussion, see Allen and Kennedy book.



Dependence Distance

Dependence Distance: If there is a dependence 
from statement S1 on iteration 𝐼 and statement S2 
on iteration 𝐼′ then  the corresponding dependence 
distance vector is

               𝑑!,!!	 = [𝐼′$ − 𝐼$, … 𝐼′% − 𝐼%]

Note: Computing distance vectors is harder than testing 
dependence



Dependence Distance
Direction Vector: For a distance vector of the form 𝑑","! =
𝐼$% − 𝐼$, … , 𝐼&% − 𝐼&  the corresponding direction vector is 𝛿","%	 =
𝛿$, … , 𝛿&, … 𝛿( , where

𝛿& =

−	, 	𝑖𝑓	𝐼&% − 𝐼& < 0
+, 	𝑖𝑓𝐼&% − 𝐼& 	> 0
	=, 	 𝑖𝑓𝐼&% − 𝐼& = 0
	 ∗	, 	𝑖𝑓	sign	+, − ,	=

Note: I < J iff the leftmost non-’=’ entry in δ(I, J) is ’+’.
• We use the property of lexicographical ordering



Loop-Carried Dependence

Statement S2 has a loop carried dependence on statement S1 
iff S1 references location M on iteration I, S2 references M on 
iteration I’ and  d(I,I’)>0 . 

Level of loop-carried dependence is the leftmost non-“=“ sign 
in the direction vector
• Forward dependence: S1 appears before S2 in the loop body
• Backward dependence: S2 appears before S1 in the loop body

do i = 1 to N
     A(i+1) = B(i)
     B(i+1) = A(i)
 enddo



Reordering Transformations



Math Intermezzo: Unimodular Matrix

A matrix T is unimodular iff it is a square
integer matrix with determinant +1 or -1

These properties will help us compose transformations:
• Product of two unimodular matrices is also unimodular
• Its inverse is also unimodular

For each integer vector x, a unimodular matrix T maps it 
into a unique vector y = Tx 

𝟎 𝟏
𝟏 𝟎

𝟏 𝟎
𝟏 𝟏



Loop Transformations and Matrices

A transformation is called unimodular if the matrix T is 
unimodular (i.e., square integer matrix with determinant +1 or -1)

Legality of the transformation:   𝑻 ⋅ 7⃗ ≥ 𝟎 



Examples of Unimodular 
Transformations
Interchange

Reversal

Skew

Transform matrix

𝒊′
𝒋′ =

𝟎 𝟏
𝟏 𝟎

𝒊
𝒋

𝒌′ = −𝟏 𝒌 + 𝑳 

𝒊′
𝒋′ =

𝟏 𝟎
𝟏 𝟏

𝒊
𝒋



Legality of Unimodular 
Transformations
A transformed loop nest is equivalent to the original if it preserves all 
dependencies. A transformation between these two nets is legal if the nests 
are equivalent. 

Let D be the set of distance vectors of a loop nest.  A unimodular 
transformation T is legal if and only if

∀𝒅 ∈ 𝑫	 . 	 𝑻 ⋅ 𝒅 ≥ 𝟎

Proof sketch (from Banerjee, Unimodular Transformations 2011): 
Consider loop body S of the original nest and S’ of the transformed one. Two iterations S(I) and S(I’) in the 
original nest become S’(TI) and S’(TI’) in the transformed. S’(TI) precedes S’(TI’) iff 𝑇 ⋅ 𝐼! ≥ 𝑇 ⋅ 𝐼. 
“if part”: For each d, assume 𝑇 ⋅ 𝑑 ≥ 0.  Consider that a statement S(I’) in iteration I’ depend on the statement 
S(I). Because 𝑑 = 𝐼’ − 𝐼 is the distance vector in the original loop,  we get 𝑇 ⋅ 𝐼! − 𝑇 ⋅ 𝐼 = 𝑇 𝐼! − 𝐼 ≥ 0. With 
this we get that all dependencies are preserved in the transformed loop., i.e. the two loop nests are equivalent. 
“only-if part”: Assume the transformation is legal. Let d=I’-I denote a distance in the original loop (and the 
statement in the iteration ’I depends on the one in iteration I. By hypothesis (the loop nests are equivalent), 
𝑇 ⋅ 𝐼! ≥ 𝑇 ⋅ 𝐼, so then 𝑇 ⋅ 𝐼! − 𝑇 ⋅ 𝐼 ≥ 0 and so 𝑇 ⋅ (𝐼!−𝐼) = 𝑇 ⋅ 𝑑 ≥ 0 



Loop Interchange

Informal Definition: Change nesting order of loops 
in a perfect loop nest, with no other changes.

for i=2 to N
   for j=2 to M-1
       A[i,j] = A[i,j]*2
    end for
end for

for j=2 to M-1
   for i=2 to N
       A[i,j] = A[i,j]*2
    end for
end for



Uses of Loop Interchange

1. Move independent loop innermost
2. Move independent loop outermost
3. Make accesses stride-1 in memory
4. Loop tiling (combine with strip-mining)
5. Unroll-and-jam (combine with unrolling)



Loop Interchange

Direction Vectors and Loop Interchange:
If δ is a direction vector of a particular dependence S1 → S2 in a 
loop nest and the order of loops in the loop nest is permuted, 
then the same permutation can be applied to δ to obtain the 
new direction vector for the conflicting instances of S1 and S2

Direction Matrix: A matrix where each row is the direction 
vector of a single dependence, i.e.,
each row ↔ a dependence
each column ↔ a loop



Loop Interchange Properties
Legality: A permutation of the loops in a perfect nest is legal iff the 
direction matrix, after the permutation is applied, has no “-” direction as 
the leftmost non-“=“ direction in any row
• Recall, for legality the vector after transformation should be 

lexicographically greater than “0” vector. 
• Some more intuition: To preserve the dependencies, consider the cases before transformation of 

(=,=) [independent], (=,+) and (+,=) [the dependence is still carried but by the outer (resp. inner loops)], (+,+) 
[Dependence is still carried]. But (+, - ) is illegal since the antidependence turns into a true dependence

Profitability: machine-dependent:
1. vector machines
2. parallel machines
3. caches with single outstanding loads
4. caches with multiple outstanding loads



Direction Matrix

Direction Matrix: 
each row ↔ a dependence
each column ↔ a loop

for i = 2 to N
   for j = 2 to M-1
Sp:     A[i,j] = B[i-1,j-1]
Sq:     B[i,j] = A[i,j] + A[i-1,j]
   endfor
endfor

Sp®Sq: A[i,j]/A[i,j]         = =
Sp®Sq: A[i,j]/A[i-1,j]      + =
Sq®Sp: B[i,j]/B[i-1,j-1]  + +



Direction Matrix (Illegal)

Direction Matrix: 
each row ↔ a dependence
each column ↔ a loop

for i = 2 to N
   for j = 2 to M-1
Sp:     A[i,j] = B[i-1,j-1]
Sq:     B[i,j] = A[i,j] + A[i-1,j+1]
   endfor
endfor

Sp®Sq: A[i,j]/A[i,j]         = =
Sp®Sq: A[i,j]/A[i-1,j+1]  +  -
Sq®Sp: B[i,j]/B[i-1,j-1]  + +



Applying Loop Interchange

1. Single ’+’ entry: a “serial loop”
• Move loop outermost for vectorization
• Move loop innermost for parallelization

2. Multiple ’+’ entries: Outermost one carries 
dependence
• Loop carrying the dependence changes after 

permutation!
• May still benefit by moving carried-dependences to 

the outermost loop



Example

for i = 1 to n
  for j = 1 to m
     A[i+1, j] = A[i, j] + B[i, j]
  end for
end for

for i = 1 to n
  for j = 1 to m // vectorize
     A[i+1, j] = A[i, j] 
               + B[i, j]
  end for
end for

parallel for j = 1 to m 
   for i = 1 to n
       A[i+1, j] = A[i, j] 
                 + B[i, j]
  end for
end for



Loop Reversal

Informal Definition: Reverse the order of 
execution of the iterations of a loop

for i=2 to N
  for j=2 to M-1
    for k=1 to L
      A[i,j,k] = A[i,j-1,k+1] 
             + A[i-1,j,k+1]
    endfor
  endfor
endfor

for i=2 to N
  for j=2 to M-1
    for k=L to 1 step -1
      A[i,j,k] = A[i,j-1,k+1] 
             + A[i-1,j,k+1]
    endfor
  endfor
endfor



Legality of Loop Reversal

The loop that is reversed should not carry dependence

Recall, Legality: the vector after transformation should be 
lexicographically greater than “0” vector. 
 E.g., (1, -1) ≻ (0,0) but (-1, 1) ≺ (0,0)

In our case, two dependencies:

(1) 
1 0 0
0 1 0
0 0 −1

=
+
−

=
=
+
+

≻0           (2) 
1 0 0
0 1 0
0 0 −1

+
=
−

=
+
=
+

≻0



Uses of Loop Reversal 

Convert a ’-’ to a ’+’ in a direction vector to enable 
other transformations, e.g., loop interchange.

Scalarize a vector statement (e.g., in Fortran 90) by 
ensuring that values are read before being written.
• Vectorized code: A[2:64] = A[1:63] * e
• Scalarized code:
            for i = 64 to 2 step -1
                A[i] = A[i-1] * e
            endfor



Loop Skewing
Informal Definition: Increase dependence distance by n by substituting loop 
index j with jj = j + n ∗ i. 
E.g., For n = 1, we use jj = j + I

for i=2 to N
  for j=2 to N
    A[i,j] = A[i-1,j] 
           + A[i,j-1]
  end for
end for

for i=2 to N
  for jj=i+2 to i+N
    A[i,jj-i] = A[i-1,jj-i]                
              + A[i,jj-i-1]
  end for
end for

• Improve parallelism by converting ’=’ to ’+’ in a direction vector
• Improve vectorization in a similar way
• (Rarely) Could be used to simplify index expressions



Skewing: Full Example
from A Data Locality Optimizing Algorithm, Wolf & Lam 1991. 



Loop Strip Mining

Informal Definition Convert a single loop into two nested 
loops for a specified “block size”
(Always safe.)

for i=1 to N
     A[i] = x + B[i] * 2
end for

for ii=1 to N step B
for i=ii to min(ii+B-1, N)

       A[i] = x + B[i] * 2
   end for
end for



Loop Strip Mining Applications

• Loop tiling: strip-mine and then interchange multiple uses. Can 
be useful for increasing cache locality or blocking parallel loops; 

                               When is it safe to do tiling?

• Prefetching: strip-mine by cache line size; prefetch once per 
outer iteration

• Instruction scheduling: strip-mine and then unroll inner loop

for j=1 to N
  for ii=1 to N step B

for i=ii to min(ii+B-1, N)
       A[i][j] = x + B[i][j]

for ii=1 to N step B
  for j=1 to N

for i=ii to min(ii+B-1, N)
       A[i][j] = x + B[i][j]



Tiling Example



Loop Distribution

Informal Definition: Convert a loop nest containing two or more 
statements into two or more distinct loop nests so that each 
statement appears in only a single resulting loop nest.

      for i = 2 to N
S1:     A[i] = B[i] + C[i]
S2:     D[i] = A[i] * 2.0
S3:     B[i+1] = A[i] * 3.0
      end for

for i = 2 to N
S1:     A[i] = B[i] + C[i]
S3:     B[i+1] = A[i] * 3.0
     end for
     for i = 2 to N
S2:     D[i] = A[i] * 2.0
      end for



Loop Distribution Applications

• Create perfect loops nests for other transformations like 
loop interchange

• Convert a loop-carried dependence within a loop into a 
loop-independent dependence crossing two loops:

     for i=2 to N
S1:      A[i] = B[i] + C[i]
S2:      D[i] = A[i-1] * 2.0
     end for

for i=2 to N
S1:      A[i] = B[i] + C[i]
      end for
      for i=2 to N
S2:      D[i] = A[i-1] * 2.0
      end for



Maximal Loop Distribution
• Identify the SCCs of the data dependence graph, to group 

statements in an SCC in a single loop nest
• Sort the SCCs using a topological sort on the dependence 

graph
• Generate distinct loop nests, one for each SCC, in sorted 

order
• If we have control dependence between a statement S1 is 

one SCC and the statement S2 in another SCC, create an 
array ‘flags’ that contains the Boolean conditions, populate it 
in the first SCC that induce dependence and use them in 
the second SCC. 

Reminder: 
• Strongly connected graph: a directed graph in which there is a path between all 

pairs of vertices. 
• Strongly connected component (SCC) is a maximal strongly connected subgraph



Loop Fusion

Informal Definition: Merge two or more distinct (perhaps 
non-adjacent) loops with identical loop bounds into a single loop.

for i=1 to N
   A[i] = i*i
end for
for i=1 to N
   B[i] = A[i] + 1
end for

for i=1 to N
   A[i] = i*i
   B[i] = A[i] + 1
end for



Loop Fusion
for i=1 to M
  for j=1,N-1
    A[j,i] = i*i + j*j
  end for

  for j=1 to N
    B[j,i] = A[j,i] + i + j
  end for
end for

for i=1 to M
  for j=1 to N-1
    A[j,i] = i*i + j*j
    B[j,i] = A[j,i] + i + j
  end for
  // peel last iteration:
  j=N
  B[j,i] = A[j,i] + i + j
end for



Loop Fusion Motivation

• Increase cache reuse (if same array accessed in two 
loops) Fundamental optimization for array languages 
(e.g., Fortran 90, HPF, MATLAB, APL)

 Example in F90:
       A[1:M, 1:N] = B[1:M, 1:N] * 2

C[1:M, 1:N] = A[1:M, 1:N] + 1

• Increase granularity of parallelism (work per iteration)
Important for shared-memory parallelism (the model 
with parallel loop and barriers)



Legality of Loop Fusion

Fusion-Preventing Dependence: A loop-independent 
dependence from S1 to S2 in different loops is fusion-preventing if 
fusing the two loops causes the dependence to become a loop-
carried dependence from S2 to S1.

Legality of Loop Fusion: Two loops can be fused if all three 
conditions are satisfied:
1. Both have identical bounds (transform loops if needed)
2. There is no fusion-preventing dependence between them.
3. There is no path of loop-independent dependences between 

them that contains a loop or statement that is not being fused 
with them.



Loop Fusion: Illegal Cases
for i=1 to M
  for j=2 to N
    A[j,i] = B[j-1,i] * 2
  end for

  for j=2 to N
    B[j,i] = A[j,i] * 3
  end for
end for

for i=1 to M
  for j=2 to N
    t[j] = B[j-1,i]
  end for

  for j=2 to N
    A[j,i] = t[j] * 2
    B[j,i] = A[j,i] * 3
  end for
end for

Create temporary array to make 
fusion possible



Loop Alignment

Informal Definition: Eliminate a carried dependence by 
increasing the number of iterations and executing statements on 
different subsets of the iterations 
(Always safe)

for i=2 to N
   A[i] = B[i] + C[i]
   D[i] = A[i-1] * 2.0
end for

i = 1
D[i+1] = A[i] * 2

for i=2 to N-1
   A[i] = B[i] + C[i]
   D[i+1] = A[i] * 2.0
end for

i = N
A[i] = B[i] + C[i]



Scalar Replacement

Informal Definition: Replace an array reference with a scalar 
temporary. (Use dependences to locate consistent re-use patterns)

for i = 1 to n
   for j = 2 to n
      x[j,i] = a[i] + 
               x[j-1,i] +
               b[j,i]
   end for
end for

for i = 1 to n
   t1 = a[i];
   for j = 2 to n
      x[j,i] = t1 + 
               x[j-1,i] +
               b[j,i]
   end for
end for



Unroll and Jam

Informal Definition: Unroll the outer loop by k, then fuse the 
resulting k inner loops into a single loop

 for i = 1 to n
   for j = 1 to n
      a[i] = a[i] + b[j]
   end for
end for

for i = 1 to n step 2
   for j = 1 to n
      a[i] = a[i] + b[j]
      a[i+1] = a[i+1] + b[j]
   end for
end for



More details:

Optimizing Compilers for 
Modern Architectures

Allen and Kennedy

Academic Press


