CS 526
Advanced Compiler Construction

https://charithm.web.illinois.edu/cs526/sp2024/
(slides adapted from Sasa and Vikram)
DEPENDENCE TRANSFORMS

The slides adapted from Vikram Adve
Logistics

• Project 1 results out.
 • If you got ‘0’ meet me after the class.
• Midterm marks will be released next week.
• Project 2 proposals
 • If you have any doubts email me.
 • I will reply by the end of this week.
Motivation

Memory hierarchy optimizations
Goal 1: Improving reuse of data values within loop nest
Goal 2: Exploit reuse to reduce cache, TLB misses

Tiling
Goal 1: Exploit temporal reuse when data size > cache size
Goal 2: In parallel loops, reduce synchronization overhead

Software Prefetching
Goal: Prefetch predictable accesses k iterations ahead

Software Pipelining
Goal: Extract ILP from multiple consecutive iterations

Automatic parallelization Also, auto-vectorization
Goal 1: Enhance parallelism
Goal 2: Convert scalar loop to explicitly parallel
Goal 3: Improve performance of parallel code
Reordering Transformation

Definition. Legal Transformation preserves the meaning of that program, i.e., all externally visible outputs are identical to the original program, and in identical order.

- We consider two programs equivalent (i.e., the transformation preserving the program meaning) if on the same inputs both the original and transformed programs, after being executed, produce the same outputs.

Theorem. A *reordering* transformation that preserves all data dependences in a program is a *legal* transformation.

For discussion, see Allen and Kennedy book.
Dependence Distance

Dependence Distance: If there is a dependence from statement S_1 on iteration I and statement S_2 on iteration I' then the corresponding dependence distance vector is

$$d_{I,I'} = [I'_1 - I_1, ... I'_k - I_k]$$

Note: Computing distance vectors is harder than testing dependence
Dependence Distance

Direction Vector: For a distance vector of the form $d_{I,I'} = [I'_1 - I_1, ..., I'_k - I_k]$ the corresponding direction vector is $\delta_{I,I'} = [\delta_1, ..., \delta_k, ..., \delta_m]$, where

$$\delta_k = \begin{cases}
- , & \text{if } I'_k - I_k < 0 \\
+ , & \text{if } I'_k - I_k > 0 \\
= , & \text{if } I'_k - I_k = 0 \\
* , & \text{if } \text{sign } +,-,=
\end{cases}$$

Note: $I < J$ iff the leftmost non-’=’ entry in $\delta(I,J)$ is ’+’.

• We use the property of lexicographical ordering
Loop-Carried Dependence

Statement S_2 has a loop carried dependence on statement S_1 iff S_1 references location M on iteration I, S_2 references M on iteration I' and $d(I,I')>0$.

```
    do i = 1 to N
        A(i+1) = B(i)
        B(i+1) = A(i)
    enddo
```

Level of loop-carried dependence is the leftmost non-"=" sign in the direction vector

- Forward dependence: S_1 appears before S_2 in the loop body
- Backward dependence: S_2 appears before S_1 in the loop body
Reordering Transformations

<table>
<thead>
<tr>
<th>Name</th>
<th>Purpose</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprocessing transformations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop normalization</td>
<td>Make loops canonical</td>
<td>Simplify, improve dep. analysis</td>
</tr>
<tr>
<td>Ind. var. substitution</td>
<td>Identify aux. induction vars</td>
<td>Improve dependence information</td>
</tr>
<tr>
<td>Scalar expansion</td>
<td>Replace scalar with array</td>
<td>Eliminate spurious dependences</td>
</tr>
<tr>
<td>Scalar/array privatization</td>
<td>Treat var. as iteration-private</td>
<td>Eliminate spurious dependences</td>
</tr>
<tr>
<td>Variable renaming</td>
<td>Use multiple copies of vars</td>
<td>Eliminate anti- and output-dependences</td>
</tr>
<tr>
<td>Reduction recognition</td>
<td>Recognize reductions</td>
<td>Ignore special-case dependences</td>
</tr>
<tr>
<td>Reordering transformations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop interchange</td>
<td>Change loop nesting order</td>
<td>Cache, parallelism, vectorization</td>
</tr>
<tr>
<td>Loop strip-mining</td>
<td>Make 2 nested loops</td>
<td></td>
</tr>
<tr>
<td>Loop skewing</td>
<td>Change wavefront loop to parallel</td>
<td>Improve loop parallelism</td>
</tr>
<tr>
<td>Loop reversal</td>
<td>Run loop backwards</td>
<td>Reduce array storage</td>
</tr>
<tr>
<td>Index set splitting</td>
<td>Break loop by index space</td>
<td>Remove some deps.</td>
</tr>
<tr>
<td>Loop distribution</td>
<td>Break loop by statements</td>
<td>Simplify parallelization, vectorization</td>
</tr>
<tr>
<td>Loop alignment</td>
<td>Change carried to indep.</td>
<td>Simplify parallelization, vectorization</td>
</tr>
<tr>
<td>Loop fusion</td>
<td>Join loops by statements</td>
<td>Improve cache reuse</td>
</tr>
</tbody>
</table>
Math Intermezzo: Unimodular Matrix

A matrix T is unimodular iff it is a square integer matrix with determinant $+1$ or -1.

These properties will help us compose transformations:

- Product of two unimodular matrices is also unimodular.
- Its inverse is also unimodular.

For each integer vector x, a unimodular matrix T maps it into a unique vector $y = Tx$.
Loop Transformations and Matrices

A transformation is called **unimodular** if the matrix T is unimodular (i.e., square integer matrix with determinant $+1$ or -1)

Loop interchange: $T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \tilde{t} = \vec{0}$

Loop reversal: $T = [-1], \tilde{t} = (U_1 - 1)$

Legality of the transformation: $T \cdot \tilde{t} \geq 0$
Examples of Unimodular Transformations

Interchange

for i=2 to N
 for j=2 to M-1
 end for
end for

for j=2 to M-1
 for i=2 to N
 end for
end for

Transform matrix

\[
\begin{bmatrix}
 i' \\
 j'
\end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]

Reversal

for k=1 to L
endfor

for k=L to 1 step -1
endfor

Skew

for i=2 to N
 for j=2 to N
 end for
end for

for i=2 to N
 for jj=i+2 to i+N
 end for
end for

Transform matrix

\[
\begin{bmatrix}
 i' \\
 j'
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]
Legality of Unimodular Transformations

A transformed loop nest is equivalent to the original if it preserves all dependencies. A transformation between these two nets is legal if the nests are equivalent.

Let D be the set of distance vectors of a loop nest. A unimodular transformation T is legal if and only if

\[\forall d \in D . \ T \cdot d \geq 0 \]

Proof sketch (from Banerjee, Unimodular Transformations 2011):

Consider loop body S of the original nest and S’ of the transformed one. Two iterations S(I) and S(I’) in the original nest become S’(TI) and S’(TI’) in the transformed. S’(TI) precedes S’(TI’) iff T \cdot I’ \geq T \cdot I.

“if part”: For each d, assume T \cdot d \geq 0. Consider that a statement S(I’) in iteration I’ depend on the statement S(I). Because d = I’ − I is the distance vector in the original loop, we get T \cdot I’ − T \cdot I = T(I’ − I) \geq 0. With this we get that all dependencies are preserved in the transformed loop., i.e. the two loop nests are equivalent.

“only-if part”: Assume the transformation is legal. Let d=I’-I denote a distance in the original loop (and the statement in the iteration ’I depends on the one in iteration I. By hypothesis (the loop nests are equivalent), T \cdot I’ \geq T \cdot I, so then T \cdot I’ − T \cdot I \geq 0 and so T \cdot (I’−I) = T \cdot d \geq 0
Loop Interchange

Informal Definition: Change nesting order of loops in a *perfect loop nest*, with no other changes.

```plaintext
for i=2 to N
    for j=2 to M-1
    end for
end for
```

```plaintext
for j=2 to M-1
    for i=2 to N
    end for
end for
```
Uses of Loop Interchange

1. Move independent loop innermost
2. Move independent loop outermost
3. Make accesses stride-1 in memory
4. Loop tiling (combine with strip-mining)
5. Unroll-and-jam (combine with unrolling)
Loop Interchange

Direction Vectors and Loop Interchange:
If δ is a direction vector of a particular dependence $S_1 \rightarrow S_2$ in a loop nest and the order of loops in the loop nest is permuted, then the same permutation can be applied to δ to obtain the new direction vector for the conflicting instances of S_1 and S_2.

Direction Matrix: A matrix where each row is the direction vector of a single dependence, i.e., each row \leftrightarrow a dependence.
Each column \leftrightarrow a loop.
Loop Interchange Properties

Legality: A permutation of the loops in a perfect nest is legal iff the direction matrix, after the permutation is applied, has no “-” direction as the leftmost non-“=” direction in any row

- Recall, for legality the vector after transformation should be lexicographically greater than “0” vector.

- **Some more intuition:** To preserve the dependencies, consider the cases before transformation of (=,=) [independent], (=,+), and (+,=) [the dependence is still carried but by the outer (resp. inner loops)], (+,+) [Dependence is still carried]. But (+, -) is illegal since the antidependence turns into a true dependence

Profitability: machine-dependent:

1. vector machines
2. parallel machines
3. caches with single outstanding loads
4. caches with multiple outstanding loads
Direction Matrix

Direction Matrix:
each row ↔ a dependence
each column ↔ a loop

for $i = 2$ to N
 for $j = 2$ to $M-1$
 Sp: $A[i,j] = B[i-1,j-1]$
 endfor
endfor

Sp→Sq: $A[i,j]/A[i,j] = =$
Sp→Sq: $A[i,j]/A[i-1,j] +=$
Sq→Sp: $B[i,j]/B[i-1,j-1] +=$
Direction Matrix (Illegal)

Direction Matrix:
- each row ↔ a dependence
- each column ↔ a loop

for $i = 2$ to N
 for $j = 2$ to $M-1$
 Sp: $A[i,j] = B[i-1,j-1]$
 endfor
endfor
Applying Loop Interchange

1. **Single’+’ entry: a “serial loop”**
 - Move loop outermost for vectorization
 - Move loop innermost for parallelization

2. **Multiple’+’ entries: Outermost one carries dependence**
 - Loop carrying the dependence changes after permutation!
 - May still benefit by moving carried-dependences to the outermost loop
Example

for i = 1 to n
 for j = 1 to m
 end for
end for

for i = 1 to n
 for j = 1 to m
 end for
end for

parallel for j = 1 to m
 for i = 1 to n
 end for
end for
Loop Reversal

Informal Definition: Reverse the order of execution of the iterations of a loop

for i=2 to N
 for j=2 to M-1
 for k=1 to L
 endfor
 endfor
endfor

for i=2 to N
 for j=2 to M-1
 for k=L to 1 step -1
 endfor
 endfor
endfor
Legality of Loop Reversal

The loop that is reversed should not carry dependence

Recall, **Legality**: the vector after transformation should be lexicographically greater than “0” vector.

E.g., \((1, -1) \succ (0,0)\) but \((-1, 1) \prec (0,0)\)

In our case, two dependencies:

\[
\begin{align*}
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} & \begin{bmatrix} - \\ + \end{bmatrix} = \begin{bmatrix} = \\ + \end{bmatrix} \succ 0 \\
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} & \begin{bmatrix} - \\ = \end{bmatrix} = \begin{bmatrix} = \\ + \end{bmatrix} \succ 0
\end{align*}
\]
Uses of Loop Reversal

Convert a ’-’ to a ’+’ in a direction vector to enable other transformations, e.g., loop interchange.

Scalarize a vector statement (e.g., in Fortran 90) by ensuring that values are read before being written.

- Scalarized code:

  ```plaintext
  for i = 64 to 2 step -1
      A[i] = A[i-1] \times e
  endfor
  ```
Loop Skewing

Informal Definition: Increase dependence distance by n by substituting loop index j with \(jj = j + n \times i \).

E.g., For \(n = 1 \), we use \(jj = j + 1 \)

```
for i=2 to N
    for j=2 to N
        A[i,j] = A[i-1,j]
        + A[i,j-1]
    end for
end for
```

```
for i=2 to N
    for jj=i+2 to i+N
        + A[i,jj-i-1]
    end for
end for
```

- Improve parallelism by converting ‘=’ to ‘+’ in a direction vector
- Improve vectorization in a similar way
- (Rarely) Could be used to *simplify* index expressions
Skewing: Full Example

\[
\text{for } I_1 := 0 \text{ to } 5 \text{ do }
\]
\[
\text{for } I_2 := 0 \text{ to } 6 \text{ do }
\]
\[
\]
\[
D = \{(0, 1), (1, 0), (1, -1)\}.
\]

\[
\text{for } I'_1 := 0 \text{ to } 5 \text{ do }
\]
\[
\text{for } I'_2 := I'_1 \text{ to } 6+I'_1 \text{ do }
\]
\[
\]
\[
T = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}
\]
\[
D' = TD = \{(0, 1), (1, 1), (1, 0)\}.
\]
Loop Strip Mining

Informal Definition Convert a single loop into two nested loops for a specified “block size”

(Always safe.)

for i=1 to N
	A[i] = x + B[i] * 2
end for

for ii=1 to N step B
 for i=ii to min(ii+B-1, N)
 A[i] = x + B[i] * 2
 end for
end for
Loop Strip Mining Applications

- **Loop tiling:** *strip-mine* and then *interchange* multiple uses. Can be useful for increasing cache locality or blocking parallel loops;

\[
\begin{align*}
&\text{for } j=1 \text{ to } N \\
&\quad \text{for } ii=1 \text{ to } N \text{ step } B \\
&\quad \quad \text{for } i=ii \text{ to } \min(ii+B-1, N) \\
&\quad \quad \quad A[i][j] = x + B[i][j]
\end{align*}
\]

When is it safe to do tiling?

- **Prefetching:** *strip-mine* by cache line size; prefetch once per outer iteration

- **Instruction scheduling:** *strip-mine* and then unroll inner loop
Tiling Example

for $I'_1 := 0$ to 5 do
 for $I'_2 := I'_1$ to $6+I'_1$ do

$T = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

$D' = TD = \{(0,1), (1,1), (1,0)\}$

for $II'_1 := 0$ to 5 by 2 do
 for $II'_2 := 0$ to 11 by 2 do
 for $I'_1 := II'_1$ to $\min(5, II'_1 + 1)$ do
 for $I'_2 := \max(I'_1, II'_2)$ to $\min(6+I'_1, II'_2+1)$ do
 $a[I'_2 + 1] := 1/3 \times (a[I'_2] + a[I'_2 + 1] + a[I'_2 + 2])$;
Loop Distribution

Informal Definition: Convert a loop nest containing two or more statements into two or more distinct loop nests so that each statement appears in only a single resulting loop nest.

```plaintext
for i = 2 to N
  S1: A[i] = B[i] + C[i]
  S2: D[i] = A[i] * 2.0
end for
```

```plaintext
for i = 2 to N
  S1: A[i] = B[i] + C[i]
end for
```

```plaintext
for i = 2 to N
  S2: D[i] = A[i] * 2.0
end for
```
Loop Distribution Applications

- Create perfect loops nests for other transformations like loop interchange
- Convert a loop-carried dependence within a loop into a loop-independent dependence crossing two loops:

```plaintext
for i=2 to N
S1:     A[i] = B[i] + C[i]
S2:     D[i] = A[i-1] * 2.0
end for
```
Maximal Loop Distribution

- Identify the SCCs of the data dependence graph, to group statements in an SCC in a single loop nest
- Sort the SCCs using a topological sort on the dependence graph
- Generate distinct loop nests, one for each SCC, in sorted order
- If we have control dependence between a statement S_1 is one SCC and the statement S_2 in another SCC, create an array ‘flags’ that contains the Boolean conditions, populate it in the first SCC that induce dependence and use them in the second SCC.

Reminder:
- **Strongly connected graph**: a directed graph in which there is a path between all pairs of vertices.
- **Strongly connected component (SCC)** is a maximal strongly connected subgraph
Loop Fusion

Informal Definition: Merge two or more distinct (perhaps non-adjacent) loops with identical loop bounds into a single loop.

```plaintext
for i=1 to N
    A[i] = i*i
end for
for i=1 to N
    B[i] = A[i] + 1
end for
```
Loop Fusion

for i=1 to M
 for j=1,N-1
 A[j,i] = i*i + j*j
 end for

for j=1 to N
 B[j,i] = A[j,i] + i + j
end for

// peel last iteration:
j=N
B[j,i] = A[j,i] + i + j
end for
Loop Fusion Motivation

- Increase cache reuse (if same array accessed in two loops) Fundamental optimization for array languages (e.g., Fortran 90, HPF, MATLAB, APL)

 Example in F90:
 \[
 \]

- Increase granularity of parallelism (work per iteration) Important for shared-memory parallelism (the model with parallel loop and barriers)
Legality of Loop Fusion

Fusion-Preventing Dependence: A loop-independent dependence from S1 to S2 in different loops is fusion-preventing if fusing the two loops causes the dependence to become a loop-carried dependence from S2 to S1.

Legality of Loop Fusion: Two loops can be fused if all three conditions are satisfied:

1. Both have identical bounds (transform loops if needed)
2. There is no fusion-preventing dependence between them.
3. There is no path of loop-independent dependences between them that contains a loop or statement that is not being fused with them.
Loop Fusion: Illegal Cases

for i=1 to M
 for j=2 to N
 A[j,i] = B[j-1,i] * 2
 end for
end for

for j=2 to N
end for

Create temporary array to make fusion possible
Loop Alignment

Informal Definition: Eliminate a carried dependence by increasing the number of iterations and executing statements on different subsets of the iterations

(Always safe)

```plaintext
for i=2 to N
    A[i] = B[i] + C[i]
    D[i] = A[i-1] * 2.0
end for

i = 1
D[i+1] = A[i] * 2

for i=2 to N-1
    A[i] = B[i] + C[i]
    D[i+1] = A[i] * 2.0
end for

i = N
A[i] = B[i] + C[i]
```
Scalar Replacement

Informal Definition: Replace an array reference with a scalar temporary. (Use dependences to locate consistent re-use patterns)

\[
\text{for } i = 1 \text{ to } n \\
\quad \text{for } j = 2 \text{ to } n \\
\quad \quad x[j,i] = a[i] + x[j-1,i] + b[j,i] \\
\quad \text{end for} \\
\text{end for}
\]

\[
\text{for } i = 1 \text{ to } n \\
\quad t1 = a[i]; \\
\quad \text{for } j = 2 \text{ to } n \\
\quad \quad x[j,i] = t1 + x[j-1,i] + b[j,i] \\
\quad \text{end for} \\
\text{end for}
\]
Unroll and Jam

Informal Definition: Unroll the outer loop by k, then fuse the resulting k inner loops into a single loop

```plaintext
for i = 1 to n
  for j = 1 to n
    a[i] = a[i] + b[j]
  end for
end for

for i = 1 to n step 2
  for j = 1 to n
    a[i] = a[i] + b[j]
    a[i+1] = a[i+1] + b[j]
  end for
end for
```
More details:

Optimizing Compilers for Modern Architectures

Allen and Kennedy

Academic Press