CS 526

 Advanced CompilerConstruction
https://charithm.web.illinois.edu/cs526/sp2024/ (slides adapted from Sasa and Vikram)

Roadmap

- Control-flow Analysis
- SSA-based Analysis
- General Data-flow Analysis
- Dependence Analysis
- Pointer Analysis
- Interprocedural Analysis

And then some advanced topics: Vectorization, Tensor Compilation, ML in compilers

DEPENDENCE ANALYSIS

The slides based on lectures by Vikram Adve and David Padua and Dragon Book

Theme

How can a compiler enhance parallelism and locality in programs with arrays?

Exposing available parallelism is not easy!

- Find parallel tasks
- Minimize communication \& synchronization overhead

Data locality:A program has good data locality if CPU accesses the same data it has used recently (temporal locality) or data neighboring such data (spatial locality)

Theme

Parallelism and data locality go hand-in-hand

- Identify data locality \Rightarrow know the parallelism

Previous data-flow analysis does not work

- We don't distinguish the ways the statement was reached, i.e. different executions of the same statement in the loop
- We didn't discuss how to treat arrays in that framework
- For parallelization we need to reason about the different dynamic executions of the same statement

Motivation:Vectorization

Motivation:Vectorization

```
void vec_eltwise_product(vec_t* a, vec_t* b,
            vec_t* c) {
    size_t i;
    for (i = 0; i < a->size; i++) {
        c->data[i] = a->data[i] * b->data[i];
    }
}
```


void vec_eltwise_product_avx (vec_t* a, vec_t* b,
vec_t* c) \{
size_t i;
m256 va;
_m256 vb;
_m256 vc;
for (i $=0 ; i<a->s i z e ; ~ i ~+=~ 8) ~\{~$
va $=$ mm256_loadu_ps (\&a->data[i]) ;
$\mathrm{vb}=$ mm256_loadu_ps(\&b->data[i]) ;
vc $=$ mm256_mul_ps (va, vb) ;
_mm256_storeu_ps (\&c->data[i], vc) ;
\}
\}

*Slide from Maria Garzaran and David Padua
** AVX code from Intel's Software\&Services Group talk

Motivation:Task Parallelization

$$
\begin{aligned}
& \text { for (i=0; i < N; i++) } \\
& \text { \{ } \\
& Y[i]=X[i]-1 \\
& Y[i]=Y[i] * Y[i] \\
& \text { \} }
\end{aligned}
$$

```for (i=0; i < N/4; i++) { Y[i] = X[i] - 1 Y[i] = Y[i] * Y[i] }```	```for (i=N/4; i < N/2; i++) { Y[i] = X[i] - 1 Y[i] = Y[i] * Y[i] }```
```for (i=N/2; i < 3*N/4; i++) { Y[i] = X[i] - 1 Y[i] = Y[i] * Y[i] }```	```for (i=3*N/4; i < N; i++) { Y[i] = X[i] - 1 Y[i] = Y[i] * Y[i] }```

wait for all threads to finish before proceeding
SPMD = Single program multiple data; there is a synchronization barrier at the end

Data Dependence

A data dependence from statement $\mathrm{S} \|$ to statement $\mathbf{S} 2$ exists if
I. there is a feasible execution path from SI to S 2 , and
2. an instance of SI references the same memory location as an instance of $S 2$ in some execution of the program, and
3. at least one of the references is a store.

Kinds of Data Dependence

Direct Dependence

$$
\begin{aligned}
& X=\ldots \\
& \ldots=X+\ldots
\end{aligned}
$$

Anti-dependence

$$
\begin{aligned}
& \ldots=X \\
& X=\ldots
\end{aligned}
$$

Output Dependence

$$
\begin{aligned}
& X=\ldots \\
& X=\ldots
\end{aligned}
$$

Dependence Graph

A dependence graph is a graph with:

- Each node represents a statement, and
- Each directed edge from SI to S2, if there is a data dependence between SI and S 2 (where the instance of $S 2$ follows the instance of SI in the relevant execution).
- SI is known as a source node
- S2 is known as a sink node

Kinds of Data Dependence

Direct Dependence

$$
\begin{aligned}
& \text { SI: } X=\ldots \\
& \text { S2: } \ldots=X+\ldots
\end{aligned}
$$

Dependence Graph Edges

Anti-dependence

$$
\begin{aligned}
& S 1: \ldots=X \\
& S 2: X=\ldots
\end{aligned}
$$

Output Dependence $\mathrm{SI}: \mathrm{X}=\ldots$

$$
S 2: X=\ldots
$$

Dependence Graph for Loops

(Repeat) A dependence graph is a graph with:

- one node per statement, and
- a directed edge from SI to $S 2$ if there is a data dependence between SI and S2 (where the instance of $S 2$ follows the instance of $S I$ in the relevant execution).

For loops: dependence graph is a summary of unrolled dependencies for different iterations

- Some (detailed) information may be lost

Dependence in Loops

int $\mathrm{X}[\mathrm{]}, \mathrm{Y}[\mathrm{]}, \mathrm{a}[\mathrm{]}, \mathrm{i}$;
for $i=1$ to N
SI:
SD:

$$
\begin{aligned}
& X[i]=a[i]+2 \\
& Y[i]=X[i]+1
\end{aligned}
$$

end

Dependence in Loops

int $\mathrm{X}[\mathrm{]}, \mathrm{Y}[\mathrm{]}, \mathrm{a}[\mathrm{]}, \mathrm{i}$;
for $i=1$ to N
SI:
SD:

$$
\begin{aligned}
& X[i+1]=a[i]+2 \\
& Y[i]=X[i]+1
\end{aligned}
$$

end

Dependence in Loops

int $\mathrm{X}[\mathrm{]}, \mathrm{Y}[\mathrm{]}, \mathrm{a}[\mathrm{]}, \mathrm{i}$;
for $i=2$ to N
SI:
SD:

$$
\begin{aligned}
& X[i]=a[i]+2 \\
& Y[i]=X[i-1]+1
\end{aligned}
$$

end

Dependence in Loops

int $\mathrm{X}[\mathrm{]}, \mathrm{Y}[\mathrm{]}, \mathrm{a}[\mathrm{]}, \mathrm{i}$;
for $i=1$ to N
SI:
SD:

$$
\begin{aligned}
& X[i]=a[i]+2 \\
& Y[i]=X[i+1]+1
\end{aligned}
$$

end

Dependence in Loops

int X[]$, \mathrm{Y}[\mathrm{]}, \mathrm{a}[\mathrm{l}, \mathrm{t}, \mathrm{i}$; for $i=1$ to N
SI:

$$
\begin{aligned}
& \mathrm{t}=\mathrm{a}[\mathrm{i}]+2 \\
& \mathrm{Y}[\mathrm{i}]=\mathrm{t}+1
\end{aligned}
$$

end

Loop Carried Dependence: one that crosses the loop iteration boundary

Loop Independent Dependence: one

 that remains within the statements in the single iteration
Next...

Let us introduce the affine transform theory

- Reorder statements instead of remove
- Lets us use standard mathematical tools (solving linear equations, mathematical programming, solving linear constraints)

Reordering Transformation

Reordering Transformation: merely changes
the order of execution of computations in a program, without adding or deleting executions of any computations.

Preserving Dependence: a reordering transformation preserves a dependence if it preserves the relative execution order of the source and sink statements of the dependence.

Reordering Transformation

Definition. Legal Transformation preserves the meaning of that program, i.e., all externally visible outputs are identical to the original program, and in identical order.

- We consider two programs equivalent (i.e., the transformation preserving the program meaning) if on the same inputs both the original and transformed programs, after being executed, produce the same outputs.

Theorem. A reordering transformation that preserves all data dependences in a program is a legal transformation.

Proof of Theorem I (by contradiction)

Loop-free program:

Let $S_{1}, \ldots S_{n}$ be the original execution order, and $i_{\mid} \ldots i_{n}$ a permutation of the statement indices in the reordered program. If we reorder code without violating dependencies, but the output changed, then at least one statement would need to produce a different output. Since the statement is the same as in the original program, then its error must have propagated from the inputs. But in that case, there must have been a previous statement that violated (flow, anti, or output) dependence. Contradiction!

Loops:

The previous argument directly extends, by unrolling (and the index of the loop iteration represents the part of the permutation index).

Conditionals:

If there are conditional statements, the theorem must include control dependences in addition to data dependences.
(We will come back to this point next week)

Dependence in Loop Nests

Goal: Supporting transformations of a given loop nest (Assume perfect loop nest here)

Canonical Loop Nest: A loop nest is in canonical form if both lower bound and step of each loop are +1 .

$$
\begin{gathered}
\text { do i1 }=1 \text { to n1 } \\
\text { do i2 }=1 \text { to n2 } \\
\cdot \text { } \cdot \text { do ik }=1 \text { to nk } \\
\text { statements } \\
\text { enddo }
\end{gathered}
$$

enddo
enddo

Dependence in Loop Nests

do i1 $=1$ to n1
do i2 $=1$ to n2
•• .
do ik $=1$ to nk
statements
enddo
enddo
enddo

Iteration space
The iteration space of the loop nest is a set of points in a kdimensional integer space (i.e., a polyhedron):

$$
\begin{aligned}
L= & \left\{\left[i_{1}, \ldots, i_{n}\right]:\right. \\
& 1 \leq i_{1} \leq n_{1} \wedge \ldots \wedge \\
& \left.1 \leq i_{k} \leq n_{k}\right\}
\end{aligned}
$$

Each element $\left[i_{1}, \ldots, i_{n}\right]$ is an iteration vector

Example

Inequalities:

```
for i in 0 to 5
\[
\begin{aligned}
& \text { for } j \text { in } i \text { to } 7 \\
& \quad z[i, j]=i+j ;
\end{aligned}
\]
for i in 0 to 5
    for j in i to 7
```

$$
\begin{array}{ll}
0 \leq i & i+0 \cdot j+0 \geq 0 \\
i \leq 5 & -i+0 \cdot j+5 \geq 0 \\
i \leq j & -i+j+0 \geq 0 \\
j \leq 7 & 0 \cdot i-j+7 \geq 0
\end{array}
$$

Turn the inequalities in the form $\alpha \cdot i+\beta \cdot j+\gamma \geq 0$

- $[\alpha, \beta]$ become rows in the matrix B
- γ becomes an element in the vector \mathbf{b}

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
i \\
j
\end{array}\right]+\left[\begin{array}{l}
0 \\
5 \\
0 \\
7
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Iteration of the Loop Nest

$$
\left\{i \in \mathbb{Z}^{n} \mid B i+b \geq 0\right\}
$$

- n is the depth of the loop nest
- B is a $\mathrm{m} \times n$ matrix
- $\quad b$ is a vector with length m
- $\quad 0$ is a vector of m zeros

Represent a convex polyhedron

Incorporating Symbolic Constraints (e.g., for i < n): add symbolic variable, extending the vector:

$$
\left\{i \in \mathbb{Z} \quad \left\lvert\,\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
i \\
n
\end{array}\right] i+b \geq\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.\right\}
$$

Dependence in Loop Nests

Lexicographic Order: for iteration vectors
$I=\left[i_{1}, \ldots, i_{n}\right]$ and $I^{\prime}=\left[i_{1}^{\prime}, \ldots, i_{n}^{\prime}\right]$:
$\left[i_{1}, \ldots, i_{n}\right]<\left[i_{1}^{\prime}, \ldots, i_{n}^{\prime}\right]$ iff there is a subscript \mathbf{k}, such that $i_{1}=i_{1}^{\prime}, \ldots i_{k-1}=i_{k-1}^{\prime}$ but $i_{k}<i_{k}^{\prime}$

If $\left[i_{1}, \ldots, i_{n}\right]<\left[i_{1}^{\prime}, \ldots, i_{n}^{\prime}\right]$ we say that the iteration I precedes the iteration I^{\prime}

Examples: $\quad[1,2,3]<[I, 2,4]$ and $[I, 2,3]<[1,3, I]$

Dependence in Loop Nests

$$
\begin{aligned}
& \text { do v1 = } 1 \text { to n1 } \\
& \text { do v2 = } 1 \text { to n2 } \quad \begin{array}{l}
\mathrm{I}=[\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vk}] \\
\mathrm{I}^{\prime}=\left[\mathrm{v} 1^{\prime}, \mathrm{v} 2^{\prime}, \ldots, \mathrm{vk},\right]
\end{array}
\end{aligned}
$$

$$
\text { do } \mathrm{vk}=1 \text { to ak }
$$

$$
\mathrm{X}[f 1(\mathrm{I}), \ldots, \mathrm{fk}(\mathrm{I})]=\ldots
$$

$$
\ldots=X\left[g 1\left(I^{\prime}\right), \ldots, g k\left(I^{\prime}\right)\right]
$$

end
end
end
A data dependence exists ff $\exists I, I^{\prime} \in[1 . . n 1] x \ldots x[1 . . n k]$ s.t. $\quad[f 1(I), \ldots, f k(I)]=\left[g 1\left(I^{\prime}\right), \ldots, g k\left(I^{\prime}\right)\right]$

Direct (Flow) Dependence in Loops

We say that $\mathrm{SA} \rightarrow \mathrm{SB}(\mathrm{SA} \delta \mathrm{SB})$ iff there exist $I, I^{\prime} \in L$ and $I \leq I^{\prime}$ where
I. There is a feasible path from instance I of statement $S A$ to instance I^{\prime} of statement SB,

$$
\begin{array}{ll}
S A: & X[f 1(I), \ldots, f k(I)]=\ldots \\
S B: & \ldots .=X\left[g 1\left(I^{\prime}\right), \ldots, \operatorname{gk}\left(I^{\prime}\right)\right]
\end{array}
$$

2. $f_{1}(I)=g_{1}\left(I^{\prime}\right), f_{2}(I)=g_{2}\left(I^{\prime}\right), \ldots, f_{k}(I)=g_{k}\left(I^{\prime}\right)$

The statement SA in iteration I writes and SB in iteration I^{\prime} reads from the same memory location M

Antidependence in Loops

We say that $\mathrm{SA} \rightarrow \mathrm{SB}\left(\mathrm{SA} \delta^{-1} \mathrm{SB}\right)$ iff there exist $I, I^{\prime} \in L$ and $I \leq I^{\prime}$:
I. There is a feasible path from instance I of statement SA to instance I^{\prime} of statement SB,

$$
\begin{array}{ll}
S A: \quad & \ldots=X[f 1(I), \ldots, f k(I)) \\
& \ldots \\
S B: & X\left[g 1\left(I^{\prime}\right), \ldots, \operatorname{gk}\left(I^{\prime}\right)\right]=\ldots
\end{array}
$$

2. $f_{1}(I)=g_{1}\left(I^{\prime}\right), f_{2}(I)=g_{2}\left(I^{\prime}\right), \ldots, f_{k}(I)=g_{k}\left(I^{\prime}\right)$

The statement SA in iteration I reads and SB in iteration I^{\prime} writes to the same memory location M

Output Dependence in Loops

We say that $\mathrm{SA} \rightarrow \mathrm{SB}\left(\mathrm{SA} \delta^{0} \mathrm{SB}\right)$ iff there exist $I, I^{\prime} \in L$ and $I \leq I^{\prime}$:
I. There is a feasible path from instance I of statement SA to instance I^{\prime} of statement SB,

$$
\begin{aligned}
& \text { SA: } X[f 1(I), \ldots, f k(I)]=\ldots \\
& \\
& \ldots \\
& S B: X\left[g 1\left(I^{\prime}\right), \ldots, \operatorname{gk}\left(I^{\prime}\right)\right]=\ldots
\end{aligned}
$$

2. $f_{1}(I)=g_{1}\left(I^{\prime}\right), f_{2}(I)=g_{2}\left(I^{\prime}\right), \ldots, f_{k}(I)=g_{k}\left(I^{\prime}\right)$

The statement SA in iteration I and SB in iteration I^{\prime} both write to the same memory location M

Dependence Testing

Dependence testing requires finding a solution to $f_{1}(I)=g_{1}\left(I^{\prime}\right)$,
$f_{2}(I)=g_{2}\left(I^{\prime}\right), \ldots$,
$f_{k}(I)=g_{k}\left(I^{\prime}\right)$
under the inequality constraints $I \in L$ and $I^{\prime} \in L$

```
do i1 = L_1 to U_1
    do \(\mathrm{i} 2=\mathrm{L}\) _ 2 to \(\mathrm{U} \_2\)
        do ik = L_k to U_k
        statements
        enddo
```

enddo
enddo

Complexity: undecidable in general

- Indirection arrays (e.g. X[Y[i]]). They may only be known at runtime, without a specific application knowledge
- General alias analysis
- Non-linear subscript expressions

Dependence Testing: Formulate

Since we assume affine subscript expressions, each $f(I)$ and $g(I)$ is

$$
c_{0}+c_{1} i_{1}+\ldots+c_{n} i_{n}
$$

where $i_{1} \quad \ldots \quad i_{n}$ are loop index variables and c's are constants.
So we now have a system of equations

$$
\begin{aligned}
a_{10} & +a_{11} i_{1}+\ldots+a_{1 n} \dot{i}_{n}=b_{10}+b_{11} j_{1}+\ldots+b_{1 n} j_{n} \\
\ldots & \\
a_{k \theta} & +a_{k 1} \dot{i}_{1}+\ldots+a_{k n} \dot{i}_{n}=b_{k \theta}+b_{k 1} j_{1}+\ldots+b_{k n} j_{n}
\end{aligned}
$$

And for all $I: \mathrm{L}_{1} \leq \mathrm{i}_{1} \leq \mathrm{U}_{1} \ldots \mathrm{~L}_{\mathrm{n}} \leq \mathrm{i}_{\mathrm{n}} \leq \mathrm{U}_{\mathrm{n}}$ and same for I^{\prime}
Instance of integer programming
\Rightarrow NP-complete in general (but don't be scared by it!!!)

Simplifications

Two major simplifications in practice:

- Subscript expressions are usually simple: most often i_{k} or $a_{1} i_{k}+a_{0}$
- Induction variable transformations help
- Be conservative:

Check if a dependence may exist.

Simplifications

ZIV, SIV, MIV A subscript expression containing zero, single, or multiple index variable respectively:
E.g., A[3], A[2 *il-3], A[2*il + $3 * i 2+5]$

Separable Subscripts : A subscript position is said to be separable if the index variables used in that subscript position are not used in any other subscript position.
E.g., $A[i+l, j, k]$ and $A[i, j, k]$

Coupled Subscripts : Two subscript positions are said to be coupled if the same index variable is used in both positions.
E.g., $A[i+I, i, k]$ and $A[i, j+i, k]$

Exact Solutions for SIV

A pair of subscripts with index variable i_{k} are Strong SIV if the subscript expressions are the form $a i_{k}+b_{1}$ and $a i_{k}+b_{2}$

- The loop iterates between one and n_{k}.
- Assumes: $\mathrm{n}_{\mathrm{k}}, \mathrm{a}, \mathrm{b}_{1}, \mathrm{~b}_{2}$ are known

Dependence exists iff either of these hold:
I. $a=0$ and $b_{1}=b_{2}$, or
2. $\left|d_{k}\right| \leq n_{k}-1$, where $d_{k}=(b 1-b 2) / a$ and integer

Proof: We assume $I<l$ ' and solve for $f(l)=g\left(l^{\prime}\right)$. Then $a l+b_{1}=a l \prime+b_{2}$. We get $l^{\prime}-l$ $=\left(b_{1}-b_{2}\right) / a$. The dependence exists if the formula can be satisfied within the range of the indices, i.e. if this expression is smaller than the loop bound

Some special cases of SIV

Special cases:

- Weak-zero SIV: compare $a_{1} i_{k}+b_{1}$ with b_{2}
$I=\left(b_{2}-b_{1}\right) / a_{1}$ and solution exists if $I \leq n_{k}-1$
- Weak-crossing SIV: compare $a_{1} i_{k}+b_{1}$ with $-a_{1} i_{k}+b_{2}$ Here the distance changes to $\left(b_{2}-b_{1}\right) / 2 a_{1}$

Weak SIV: GCD Test

Simplifications

I. ignore loop bounds!
2. only test if a solution is possible (GCD property)
3. test each subscript position separately

GCD Property for Single Variable
Let $f(I)=a_{1} I+a_{0}$ and $g(I)=b_{1} I+b_{0}$
$f(I)=g\left(I^{\prime}\right) \Rightarrow a_{1} I+a_{0}=b_{1} I^{\prime}+b_{0}$.
GCD Property: If there is a solution to the previous equation, then $g=\operatorname{gcd}\left(a_{1}, b_{1}\right)$ divides $a_{0}-b_{0}$.

Proof: Let $\mathrm{a}_{1}=\mathrm{n}_{1} g, \mathrm{~b}_{1}=\mathrm{m}_{1} g$. Then $g \times\left(\mathrm{n}_{1} \mathrm{l}-\mathrm{m}_{1} \mathrm{l}^{\prime}\right)=\mathrm{a}_{0}-\mathrm{b}_{0}$, and the term in parenthesis must be an integer.

GCD Test for Multiple Indices

Let $f(I)=a_{n} i_{n}+\ldots+a_{1} i_{1}+a_{0}$ and

$$
g(l)=b_{n}^{n} i_{n}+\ldots+b_{1} i_{1}+b_{0}
$$

GCD Property: If there is a solution to the equation $a_{n} i_{n 1}+\ldots+a_{0}=b_{n} i_{n 2}+\ldots+b_{0}$, then $g=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$ divides $\left(a_{0}-b_{0}\right)$.

More tests: E.g., Banerjee test, Lamport test, Delta test...

Exact Solutions for Weak SIV

The set of subscripts with index variable i_{k} are Wealk SIV if the subscripts are of the form $a_{1} i_{k}+b_{1}$ and $a_{2} i_{k}+b_{2}$

Each such subscript position j gives an equation of the form:

$$
a_{1} i_{k}=a_{2} i_{k}+b_{2}-b_{1}
$$

Approach for each index variable i_{k} :
I. Solve up to r simultaneous equations in 2 unknowns.
2. Check if solutions satisfy 2 inequalities from the previous slide

Exact Solutions for Weak SIV

Special case: one of a_{1} or a_{2} is zero: Wealk-Zero SIV (solution is similar to strong SIV)

General problem: Find if $a_{1} I+a_{0}=b_{1} l^{\prime}+b_{0}$
(Lemma) An extended GCD property: For any pair of values (x, y), the Euclidian GCD algorithm can also compute a triplet ($\mathrm{g}, \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$) such that

$$
g=n_{x} x+n_{y} y=\operatorname{gcd}(x, y)
$$

Exact Solutions for Weak SIV

Theorem. Let (g, n_{a}, n_{b}) be such a triplet for pair $\left(a_{l},-b_{1}\right)$.
Let x_{k} and y_{k} be given by:

$$
\begin{aligned}
& x_{k}=n_{a}\left(\frac{b_{0}-a_{0}}{g}\right)+k \frac{b_{1}}{g} \\
& y_{k}=n_{b}\left(\frac{b_{0}-a_{0}}{g}\right)+k \frac{a_{1}}{g}
\end{aligned}
$$

Then $\left(x_{k}, y_{k}\right)$ is a solution of $a_{1} i_{1}+a_{0}=b_{1} i_{2}+b_{0}$ for an integral value of k. Furthermore, for any solution (x, y) there is a k such that $x=x_{k}$ and $y=y_{k}$

Solution strategy:

I. Compute x_{0}, y_{0} using the above equations
2. Then find all values of k for which $x_{0}+k b_{1} / g$ falls within loop bounds, and similarly for y_{k}.
3. For dependence to exist, the solution $\left(x_{k}, y_{k}\right)$ must be within the region bounded by loop bounds

Solving Complicated Indices

E.g. $A[x+2 y-1,2 y, z, w+z, v, 1]$.
(reminder:)
Separable Subscripts : A subscript position is said to be separable if the index variables used in that subscript position are not used in any other subscript position. E.g., $A[i+1, j, k]$ and $A[i, j, k]$

Coupled Subscripts : Two subscript positions are said to be coupled if the same index variable is used in both positions. E.g., $A[i+l, i, k]$ and $A[i, j+i, k]$

Solving Complicated Indices

E.g. $A[x+2 y-1,2 y, z, w+z, v, 1]$.

Simplify the problem by identifying common cases:
I. Separate subscript positions into coupled groups
2. Label each subscript as ZIV, SIV, or MIV
3. For each separable subscript, apply appropriate test (ZIV, SIV, or MIV).
4. For each coupled group, apply a coupled subscript test; e.g., GCD test or Delta test
5. If no test yields independence, a dependence exists: Concatenate direction vectors from different groups
6. [10 points]: We studied several tests for independence (ZIV, SIV, MIV, GCD). Which test would you use to test for a possible dependence in the following loops? Apply the test of your choice and report if there are dependences. Assume that the array boundaries are correct. (Use the space to the right for work).

```
- for (i=0; i<100; i++)
    for (j=0; j<100; i++)
                b[i]=b[i-1]+a[j];
```

- for ($i=0 ; i<n ; i++$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{n}$; $\mathrm{i}++$)
$\mathrm{b}[3 * \mathrm{i}-2]=\mathrm{b}[2 * \mathrm{i}+5]+\mathrm{a}[\mathrm{j}] ;$
- for ($i=0 ; i<n ; i++$)
for ($j=0 ; j<n ; i++$)
$b[6 * i+2 * j+2]=b[2 * i+4 * j+4]+a[i] ;$

Dependence Distance

Dependence Distance: If there is a dependence from statement SI on iteration I to statement S2 on iteration I^{\prime} then the corresponding dependence distance vector is

$$
d_{I, I^{\prime}}=\left[I_{1}^{\prime}-I_{1}, \ldots I_{k}^{\prime}-I_{k}\right]
$$

Note: Computing distance vectors is harder than testing dependence

Dependence Distance

Direction Vector: For a distance vector of the form $d_{I, I^{\prime}}=$ $\left[I_{1}^{\prime}-I_{1}, \ldots, I_{k}^{\prime}-I_{k}\right]$ the corresponding direction vector is $\delta_{I, I \prime}=$ [$\delta_{1}, \ldots, \delta_{k}, \ldots \delta_{m}$], where

$$
\delta_{k}=\left\{\begin{array}{cc}
-, & \text { if } I_{k}^{\prime}-I_{k}<0 \\
+, & \text { if } I_{k}^{\prime}-I_{k}>0 \\
=, & \text { if } I_{k}^{\prime}-I_{k}=0 \\
*, & \text { if sign }+-,=
\end{array}\right.
$$

Note: $\mathbf{I}<\mathbf{J}$ iff the leftmost non-' $=$ ' entry in $\delta(\mathbf{I}, \mathbf{J})$ is ' + '.

- We use the property of lexicographical ordering

Loop-Independent Dependence

Statement S2 has a loop independent dependence on statement SI iff SI references location M on iteration I, S2 references M on iteration I' and $\mathbf{d}\left(\mathbf{I}, \mathbf{I}^{\prime}\right)=\mathbf{0}$.

$$
\begin{aligned}
\text { do } i & =1 \text { to } N \\
A(i+1) & =B(i) \\
B(i+1) & =A(i+1)
\end{aligned}
$$

enddo

Determines the order in which the code is executed within the nest of loops (compare to loop carried dependence!)

Loop-Carried Dependence

Statement S2 has a loop carried dependence on statement SI iff SI references location M on iteration I, S2 references M on iteration I^{\prime} and $\mathrm{d}\left(\mathrm{I}, \mathrm{I}^{\prime}\right)>0$.

$$
\begin{aligned}
\text { do } i=1 \text { to } N \\
A(i+1)=B(i) \\
B(i+1)=A(i)
\end{aligned}
$$

enddo
Level of loop-carried dependence is the leftmost non-"=" sign in the direction vector

- Forward dependence: SI appears before S2 in the loop body
- Backward dependence: S2 appears before SI in the loop body

Loop-Carried Dependence

Recall: Statement $S 2$ has a loop carried dependence on statement SI iff SI references location M on iteration I, S2 references M on iteration I^{\prime} and $d\left(\|,\|^{\prime}\right)>0$.

So, in the direction vector for any dependence, the leftmost non-'=' entry must be ' + ' (if any non-'=' entry is present).

Equivalently: the distance vector $\mathrm{d}(\mathrm{I}, \mathrm{J}) \geq 0$.

Dependence in Loop Nests

$$
\begin{aligned}
& \text { do v1 = } 1 \text { to n1 } \\
& \text { do v2 = } 1 \text { to n2 } \quad \begin{array}{l}
\mathrm{I}=[\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vk}] \\
\mathrm{I}^{\prime}=\left[\mathrm{v} 1^{\prime}, \mathrm{v} 2^{\prime}, \ldots, \mathrm{vk},\right]
\end{array}
\end{aligned}
$$

$$
\text { do } \mathrm{vk}=1 \text { to ak }
$$

$$
\mathrm{X}[f 1(\mathrm{I}), \ldots, \mathrm{fk}(\mathrm{I})]=\ldots
$$

$$
\ldots=X\left[g 1\left(I^{\prime}\right), \ldots, g k\left(I^{\prime}\right)\right]
$$

end
end
end
A data dependence exists ff $\exists I, I^{\prime} \in[1 . . n 1] x \ldots x[1 . . n k]$ s.t. $\quad[f 1(I), \ldots, f k(I)]=\left[g 1\left(I^{\prime}\right), \ldots, g k\left(I^{\prime}\right)\right]$

Dependence in Loops

S1->S2
We want:

$$
\mathrm{d}=\mathrm{I}^{\prime}-\mathrm{I}
$$

int $X[], \quad Y[], \quad a[], \quad \dot{1} ; \quad \begin{aligned} & \text { We know: } \\ & \mathrm{I}=[\mathrm{i} 0], \mathrm{I}=\left[\mathrm{i} 0^{\prime}\right]\end{aligned}$
do $i=1$ to N
S1:
S2:

$$
\begin{aligned}
& \mathrm{X}[\mathrm{i}+1]=\mathrm{a}[\mathrm{i}]+2 \\
& \mathrm{Y}[\mathrm{i}]=\mathrm{X}[\mathrm{i}]+1
\end{aligned}
$$

enddo

Dependence in Loops

int X[], Y[], a[], i; do $\mathrm{i}=2$ to N
S1: S2:

$$
\begin{aligned}
& \mathrm{X}[\mathrm{i}]=\mathrm{a}[\mathrm{i}]+2 \\
& \mathrm{Y}[\mathrm{i}]=\mathrm{X}[\mathrm{i}-1]+1
\end{aligned}
$$

enddo

S1->S2
We want:

$$
d=I^{\prime}-I
$$

We know:
$\mathrm{I}=\left[\mathrm{i} 0\right.$], $\mathrm{I}^{\prime}=\left[\mathrm{i} 0^{\prime}\right]$
$\mathrm{f}:=\mathrm{i}, \mathrm{g}:=\mathrm{i}-1$
Dependence
exists if: $\mathrm{f}(\mathrm{I})=\mathrm{g}\left(\mathrm{I}^{\prime}\right)$
$\mathrm{i} 0=\mathrm{i} 0^{\prime}-1$
i $0^{\prime}-\mathrm{i} 0=1$
$\mathrm{d}=\left[\mathrm{i} 0^{\prime}\right]-[\mathrm{i} 0]=[1]$

Dependence in Loops

int X[], Y[], a[], i; do $\mathrm{i}=1$ to N
S1: S2:

$$
\begin{aligned}
& \mathrm{X}[\mathrm{i}]=\mathrm{a}[\mathrm{i}]+2 \\
& \mathrm{Y}[\mathrm{i}]=\mathrm{X}[\mathrm{i}+1]+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { S2 -I-> S1 } \\
& \text { We want: } \\
& \text { d = I' }-\mathrm{I} \\
& \text { We know: } \\
& \mathrm{I}=[\mathrm{i} 0], \mathrm{I}^{\prime}=\left[\mathrm{i} 0^{\prime}\right] \\
& \mathrm{f}:=\mathrm{i}+1, \mathrm{~g}:=\mathrm{i} \\
& \text { Dependence } \\
& \text { exists if: } \mathrm{f}(\mathrm{I})=\mathrm{g}\left(\mathrm{I}^{\prime}\right) \\
& -\mathrm{i}) \\
& \mathrm{i} 0+1=\mathrm{i} 0^{\prime} \\
& \mathrm{i} 0^{\prime}-\mathrm{i} 0=1 \\
& \mathrm{~d}=\left[\mathrm{i} 0^{\prime}\right]=[\mathrm{i} 0]=[1]
\end{aligned}
$$

enddo

Dependence in Loops (Examples)

Task: Compute the dependence distance vector

$$
\begin{aligned}
& \text { do } i=1 \text { to } 100 \\
& \text { S1: } \\
& X(2 * i-1)=X(i)+1 \\
& \text { enddo }
\end{aligned}
$$

$$
\begin{aligned}
& \text { do } i=1 \text { to } 100 \\
& \quad X(i+1)=X(i / 2)+1 \\
& \text { enddo }
\end{aligned}
$$

Dependence in Loops (Examples)

Task: Compute the dependence distance vector

$$
\begin{array}{ll}
& \text { do } j=1 \text { to } 10 \\
& \text { do } i=1 \text { to } 100 \\
\text { S1: } & X(i, j)=w(i, j)+1 \\
\text { S2: } & Y(i, j)=X(100-i, j) \\
& \text { enddo }
\end{array}
$$

S2:

Dependence in Loops (Examples)

Task: Compute the dependence distance vector

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \qquad \begin{array}{r}
\text { for } j=1 \text { to } M \\
\text { for } k=1 \text { to } 100
\end{array}
\end{aligned}
$$

S1:

$$
x(i, j, k+1)=x(i, j, k)+1
$$

endfor
endfor
endfor

Dependence in Loops (Examples)

Task: Compute the dependence distance vector

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { for } j=1 \text { to } M \\
& \text { for } k=1 \text { to } 100 \\
& \quad X(i+5, j-2, k+1)=X(i-1, j+1, k)+1 \\
& \text { endfor } \\
& \text { endfor } \\
& \text { endfor }
\end{aligned}
$$

S1:

Dependence in Loops (Examples)

Task: Compute the dependence distance vector

for $\mathrm{i}=1$ to N

$$
\text { for } j=1 \text { to } M
$$

$$
\text { for } k=1 \text { to } 100
$$

S1:
S2:

$$
\begin{aligned}
& X(i, j, k+1)=Y(i, j, k)+1 \\
& Y(i-1, j+1, k)=X\left(i+1, j-2,2^{*} k\right)
\end{aligned}
$$

endfor
endfor
endfor

Control-Flow Analysis

Consider now a program with conditionals:

$$
\begin{aligned}
& \text { for } j=1 \text { to } n\{ \\
& A[j]=A[j] * C[j] \quad / / S 1 \\
& \text { if }(A[j]>k) \\
& B[j]=B[j]+D[j] \quad / / S 2 \\
& \text { else } \\
& B[j]=B[j]-1.0 f \\
& \text { \} } \quad
\end{aligned}
$$

Control flow dependency exists between SI and S2
($\mathrm{B}[\mathrm{j}]$ will be assigned the value only if $\mathrm{A}[\mathrm{j}]$ has some value)

Control-Flow Analysis

We can convert the control dependency into a data dependency. Key steps:

- Consider guarded statements (if (bool_var) Stmt) and
- Transform the program to extract complicated expressions from the conditionals

$$
\begin{aligned}
& \text { for } j=1 \text { to } n\{ \\
& A[j]=A[j] * C[j] \quad / / S 1 \\
& m=A[j]>k \\
& \text { if }(m) B[j]=B[j]+D[j] \\
& \text { if }(!m) B[j]=B[j]-1.0 f \\
& \}
\end{aligned}
$$

Control-Flow Analysis (Forward)

$$
\begin{aligned}
& \text { for } j=1 \text { to } n\{ \\
& \quad A[j]=A[j] * C[j] \quad / / S 1 \\
& m=A[j]>k \\
& \text { if }(m) B[j]=B[j]+D[j] \\
& \text { if }(!m) B[j]=B[j]-1.0 f
\end{aligned}
$$

The transformed program preserves all dependencies
This code can be readily vectorized:

- Compute the mask vector m[I...n]
- Compute the then branch result by filtering on m
- Compute the else branch result by filtering on m E.g., SSE has operations that admit the mask.

Control-Flow Analysis (Exit)

```
for j = 1 to n {
    A[j] = A[j] * C[j]
    if (A[j] > k) break;
    B[j] = B[j] + D[j]
}
```

This is harder to transform with guarded form:

- If the condition is true once, exiting the loop is the same as if it fully executed
- The condition depends on all iterations so far.
- Sketch of a solution.What is missing?

```
for j = 1 to n {
    if (m) break;
    A[j] = A[j] * C[j]
    m = m || A[j] > k
    if (m) break; // ?
    B[j] = B[j] + D[j]
```

```
for j = 1 to n {
    m1 = m2
    if (!m1) A[j] = A[j] * C[j]
    if (!m1) m2 = m2 || A[j] > k
    if (!m2) B[j] = B[j] + D[j]
}
```


Control-Flow Analysis (Backward)

$$
\begin{aligned}
\text { for } & j=1 \text { to } n\{ \\
& i f(A[j]<k) \text { continue; } \\
\text { S1: } & k=k+1 \\
& A[j]=B[k]+D[j] \\
& i f(A[j]>k) \text { goto } S 1 ;
\end{aligned}
$$

Appears when there is an inner loop like structure

- Applying just the forward analysis would yield potentially wrong code when combined with forward analysis
- It is transformed in conjunction with the related forward branches
- Simple heuristic: identify all code affected by a backward branch untouched and treat as a black-box. However, inefficient; for a more powerful analysis see e.g., Conversion of

