
CS 526
Advanced 
Compiler 
Construction 
https://charithm.web.illinois.edu/cs526/sp2024/
(slides adapted from Sasa and Vikram)



DATAFLOW ANALYSIS

The slides adapted from Saman Amarasinghe, Martin Rinard and Vikram Adve



Why Dataflow Analysis?

Answers key questions about the flow of 
values and other program properties over 
control-flow paths at compile-time 



Why Dataflow Analysis?

Compiler fundamentals
What defs. of x reach a given use of x (and vice-versa)?
What {<ptr,target>} pairs are possible at each statement?

Scalar dataflow optimizations
Are any uses reached by a particular definition of x?
Has an expression been computed on all incoming paths?
What is the innermost loop level at which a variable is defined?

Correctness and safety:
Is variable x defined on every path to a use of x?
Is a pointer to a local variable live on exit from a procedure?

Parallel program optimization 



Where is dataflow analysis used?

Everywhere



Where is dataflow analysis used?

Preliminary Analyses
Pointer Analysis
Detecting uninitialized variables
Type inference
Strength Reduction for Induction
Variables

Static Computation 
Elimination
Dead Code Elimination (DCE)
Constant Propagation
Copy Propagation

Redundancy Elimination
Local Common Subexpression
Elimination (CSE)
Global Common Subexpression
Elimination (GCSE)
Loop-invariant Code Motion (LICM)
Partial Redundancy Elimination (PRE)

Code Generation
Liveness analysis for register 
allocation



Basic Term Review
Point: A location in a basic block just before or after 
some statement.

Path: A path from points p1 to pn is a sequence of 
points p1, p2, . . . pn such that (intuitively) some execution 
can visit these points in order.

Kill of a Definition: A definition d of variable V is killed 
on a path if there is an unambiguous (re)definition of  V 
on that path.

Kill of an Expression: An expression e is killed on a 
path if there is a possible definition of any of the variables 
of e on that path.



Dataflow Analysis (Informally)

Symbolically simulate execution of program
• Forward (Reaching Definitions)
• Backward (Variable Liveness)

Stacked analyses and transformations that work together, e.g.
• Reaching Definitions ® Constant Propagation
• Variable Liveness ® Dead code elimination

Our plan:
• Examples first (analysis + theory)
• Theory follows



Analysis: Reaching Definitions

A definition d reaches point p if there is a path from the 
point after d to p such that d is not killed along that path.

Example Statements:
a = x+y
• It is a definition of a
• It is a use of x and y
b = a+1
• It is a definition of b And use of a

A definition reaches a use if the value written by the 
definition may be read by the use



s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s



Reaching Definitions (Declarative)

Dataflow variables (for each block B)
In(B) ≡ the set of definitions that reach the point before first 
statement in B
Out(B) ≡ the set of definitions that reach the point after last 
statement in B

Gen(B) ≡ the set of definitions made in B that are not killed in B.
Kill(B) ≡ the set of all definitions that are killed in B, i.e., 
1. on the path from entry to exit of B, if definition d Ï B; or
2. on the path from d to exit of B, if definition d ∈ B.

The difference:
In(B), Out(B) are global dataflow properties (of the function).
Gen(B), Kill(B) are local properties of the basic block B alone.



Computing Reaching Definitions

Compute with sets of definitions
• represent sets using bit vectors data structure
• each definition has a position in bit vector 

At each basic block, compute
• definitions that reach the start of block
• definitions that reach the end of block

Perform computation by simulating execution of 
program until reach fixed point



1: s = 0; 
2: a = 4; 
3: i = 0;
k == 0 

4: b = 1; 5: b = 2;

0000000

11100001110000

1111100

1111100
1111100

1111111

1111111
1111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1110000

1111000 1110100

1111100

0101111
1111100

1111111
i < n

1111111
return s6: s = s + a*b;

7: i = i + 1;
 



Formalizing the analysis:
Dataflow Equations
IN and OUT combine the properties from the neighboring 
blocks in CFG

IN[b] = OUT[b1] U ... U OUT[bn]
• where b1, ..., bn are predecessors of b in CFG

OUT[b] = (IN[b] - KILL[b]) U GEN[b]

IN[entry] = 0000000

Result: system of equations



Solving Equations
Use fixed point (worklist) algorithm
Initialize with solution of OUT[b] = 0000000
• Repeatedly apply equations

1.  IN[b] = OUT[b1] U ... U OUT[bn]
2.  OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Until reach fixed point* 
* Fixed point = equation application has no further effect

Use a worklist to track which equation applications 
may have a further effect



Reaching Definitions Algorithm
for all nodes n in N 
 OUT[n] = emptyset; // OUT[n] = GEN[n];
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };  // in efficient impl. these are bitvector operations

    IN[n] = emptyset;
    for all nodes p in predecessors(n) 
  IN[n] = IN[n] U OUT[p];

    OUT[n] = GEN[n] U (IN[n] - KILL[n]);

    if (OUT[n] changed)
       for all nodes s in successors(n) 
   Changed = Changed U { s };



Reaching Definitions: Convergence

Out[B] is finite
Out[B] never decreases for any B
 ⇒ must eventually stop changing
At most n iterations if n blocks
 ⇐ Definitions need to propagate only over 
     acyclic paths



Transform: Constant Propagation

Paired with reaching definitions (uses its results)
Check: Is a use of a variable a constant?
• Check all reaching definitions
• If all assign variable to same constant
• Then use is in fact a constant

Can replace variable with constant



1: s = 0; 
2: a = 4; 
3: i = 0;
k == 0 

4: b = 1; 5: b = 2;

0000000

11100001110000

1111100

1111100
1111100

1111111

1111111
1111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1110000

1111000 1110100

1111100

0101111
1111100

1111111
i < n

1111111
return s6: s = s + a*b;

7: i = i + 1;
 



1: s = 0; 
2: a = 4; 
3: i = 0;
k == 0 

4: b = 1; 5: b = 2;

0000000

11100001110000

1111100

1111100
1111100

1111111

1111111
1111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1110000

1111000 1110100

1111100

0101111
1111100

1111111
i < n

1111111
return s6: s = s + a*b;

7: i = i + 1;
 

Is a Being 
Constant in 
s = s+a*b?



1: s = 0; 
2: a = 4; 
3: i = 0;
k == 0 

4: b = 1; 5: b = 2;

0000000

11100001110000

1111100

1111100
1111100

1111111

1111111
1111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1110000

1111000 1110100

1111100

0101111
1111100

1111111
i < n

1111111
return s6: s = s + 4*b;

7: i = i + 1;
 

Is a Being 
Constant in 
s = s+a*b?



Analysis: Available Expressions

An expression x+y is available at a point p if 
1. Every path from the initial node to p must evaluate 

x+y before reaching p, 
2. There are no assignments to x or y after the 

expression evaluation but before p.

Available Expression information can be used to do 
global (across basic blocks) CSE
• If expression is available at use, no need to 

reevaluate it
• Beyond SSA-form analyses



Example: Available Expression
a = b + c
d = e + f
f = a + c

g = a + c

j = a + b + c + d

b = a + d
h = c + f



Is the Expression Available?
a = b + c
d = e + f
f = a + c

g = a + c

j = a + b + c + d

b = a + d
h = c + f

YES!



Is the Expression Available?
a = b + c
d = e + f
f = a + c

g = a + c

j = a + b + c + d

b = a + d
h = c + f

YES!



a = b + c
d = e + f
f = a + c

Is the Expression Available?

g = a + c

j = a + b + c + d

b = a + d
h = c + f

NO!



Is the Expression Available?
a = b + c
d = e + f
f = a + c

g = a + c

j = a + b + c + d

b = a + d
h = c + f

NO!



Transformation: Common 
Subexpression Elimination
Uses the results of available expressions
Check:
• If the expression is available and computed 

before, 
Transform: 
• At the first location, create a temporary variable
• Replace the latter occurrence(s) with the 

temporary variable name. 



Use of Available Expression
a = b + c
d = e + f
f = a + c

g = a + c

j = a + b + c + d

b = a + d
h = c + f

YES!



Use of Available Expression
a = b + c
d = e + f
f = a + c

g = a + c

j = a + b + c + d

b = a + d
h = c + f

YES!



Use of Available Expression
a = b + c
d = e + f
f‘ = a + c
f = f ’

g = f ’

j = a + b + c + d

b = a + d
h = c + f



Use of Available Expression
a = b + c
d = e + f
f‘ = a + c
f = f ’

g = f ’

j = f ’ + b + d

b = a + d
h = c + f



Formalizing Analysis
Each basic block has
• IN = set of expressions available at start of block
• OUT = set of expressions available at end of block
• GEN = set of expressions computed in block
• KILL = set of expressions killed in in block

• Compiler scans each basic block to derive GEN and 
KILL sets

• Comparison with reaching definitions: 
• definition reaches a basic block if it comes from ANY 

predecessor in CFG
• expression is available at a basic block only if it is available 

from ALL predecessors in CFG 



Dataflow Equations

• IN[b] = OUT[b1] Ç ... Ç OUT[bn]
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]
• IN[entry] = 0000
• Result: system of equations



Solving Equations
• Use fixed point algorithm
• IN[entry] = 0000
• Initialize OUT[b] = 1111
• Repeatedly apply equations

– IN[b] = OUT[b1] Ç ... Ç OUT[bn]
– OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Use a worklist algorithm to reach fixed point



Available Expressions Algorithm
for all nodes n in N
 OUT[n] = E;  // OUT[n] = E - KILL[n];
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; // OUT[Entry] = GEN[Entry] U (Æ - KILL[n]);
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
   choose a node n in Changed;
    Changed = Changed - { n };

    IN[n] = E; // E is set of all expressions
    for all nodes p in predecessors(n) 
  IN[n] = IN[n] Ç OUT[p];

    OUT[n] = GEN[n] U (IN[n] - KILL[n]);

    if (OUT[n] changed)
       for all nodes s in successors(n) 
   Changed = Changed U { s };



Questions

Does algorithm always halt?

If expression is available in some execution, is it always 
marked as available in analysis?

If expression is not available in some execution, can it 
be marked as available in analysis?



Example: Available Expression

(1)

(2)
(3)

(3)
(4)

(5)

(1) b + c
(3) a + c
(4) a + d

And some 
more…



Common Subexpression Elimination
Inputs:
(1) CFG for a procedure 
(2) Numbered set of expressions E = {e1, . . .eN }
(3) Available expressions, AVAILin(B), for each block B

Algorithm:
∀i, 1 ≤ i ≤ N : EverRedundant[i] = false; 

for each block B  // replace all uses first
    for each statement S : X = Y op Z in B 
        if (ej = “Y op Z” ∈ AVAILin(B) and ej is not killed before S in B) { 
            EverRedundant[j] = true 
            Replace S with X = tmpj
        }

for each block B // assign temporaries
    for each original statement S : X = Y op Z in B 
        if (“Y op Z” = ej and EverRedundant[j]) { 
             Allocate new temporary tmpj 
             replace S with the pair: “tmpj = Y op Z; X = tmpj”
}



CSE vs Value Numbering

One does not dominate the other
• CSE (through availability) considers the lexical names
• GVN (through numbering) considers the underlying values

• In practice, run both!

GVN better:

a = b + c
d = b
e = c + d

CSE better:

if (…) {
  c = a + 1
  d = b + c
} else {
  c = a + 2
  d = b + c
}
e = b + c



Analysis: Variable Liveness

A variable v is live at point p if 
• v is used along some path starting at p, and 
• no definition of v along the path before the use.

When is a variable v dead at point p?
• No use of  v on any path from p to exit node, or
• If all paths from p redefine v before using v.



What Use is Liveness Information?
Register allocation.
• If a variable is dead, can reassign its register

Dead code elimination.
• Eliminate assignments to variables not read later.
• But must not eliminate last assignment to variable (such as 

instance variable) visible outside CFG.
• Can eliminate other dead assignments.
• Handle by making all externally visible variables live on exit 

from CFG



Conceptual Idea of Analysis

• Simulate execution

• But start from exit and go backwards in CFG

• Compute liveness information from end to 

beginning of basic blocks



Liveness Example
a = x+y;
t = a;

c = a+x;
x == 0 

b = t+z;

c = y+1; 

1100100

1110000

• Assume a,b,c visible 
outside method
• So they are live on exit

• Assume x,y,z,t not 
visible outside method

• Represent Liveness 
Using Bit Vector
– order is abcxyzt

1100111

1000111

1100100

0101110

a b c x y z t

a b c x y z t

a b c x y z t

a b c x y z t



Transformation: Dead 
Code Elimination

a = x+y;
t = a;

c = a+x;
x == 0 

b = t+z;

c = y+1; 

1100100

1110000

1100111

1000111

1100100

0101110

a b c x y z t

a b c x y z t

a b c x y z t

• Assume a,b,c visible 
outside method
• So they are live on exit

• Assume x,y,z,t not 
visible outside method

• Represent Liveness 
Using Bit Vector
– order is abcxyzt

• Remove dead definitions

a b c x y z t



Transformation: Dead 
Code Elimination

a = x+y;
t = a;

c = a+x; 
x == 0 

b = t+z;

c = y+1; 

1100100

1110000

1100111

1000111

1100100

0101110

a b c x y z t

a b c x y z t

a b c x y z t

• Assume a,b,c visible 
outside method
• So they are live on exit

• Assume x,y,z,t not 
visible outside method

• Represent Liveness 
Using Bit Vector
– order is abcxyzt

• Remove dead definitions

a b c x y z t



Formalizing Analysis
• Each basic block has

– IN - set of variables live at start of block
– OUT - set of variables live at end of block
– USE - set of variables with upwards exposed uses in block
– DEF - set of variables defined in block

• USE[x = z; x = x+1;] = { z } (x not in USE)
• DEF[x = z; x = x+1;y = 1;] = {x, y}
• Compiler scans each basic block to derive USE and 

DEF sets



Liveness Algorithm
for all nodes n in N - { Exit } 
 IN[n] = emptyset;
OUT[Exit] = emptyset; 
IN[Exit] = use[Exit];
Changed = N - { Exit };

while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };
    
 OUT[n] = emptyset;
    for all nodes s in successors(n) 
  OUT[n] = OUT[n] U IN[s];

 IN[n] = use[n] U (out[n] - def[n]);

    if (IN[n] changed)
       for all nodes p in predecessors(n)
         Changed = Changed U { p };



Similar to Other Dataflow 
Algorithms

Backwards analysis, not forwards
Still have transfer functions
Can generalize framework to work for both 
forwards and backwards analyses



Order of the Analysis?
Goal: Propagate information as far as possible in each iteration

Random – Select the next node randomly

Preorder – Select the next node, than explore children in 
depth-first fashion

Postorder – Before selecting the node, explore all its children

Reverse Postorder – Explore the node, than explore all its 
children
• Opposite from postorder
• Not the same as preorder!



Comparison
Available Expressions
for all nodes n in N
 OUT[n] = E;  
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; 

while (Changed != emptyset)
   choose a node n in Changed;
    Changed = Changed - { n };

    IN[n] = E; 
    for all nodes p in predecessors(n) 
  IN[n] = IN[n] Ç OUT[p];

    OUT[n] = GEN[n] U (IN[n] - KILL[n]);

    if (OUT[n] changed)
       for all nodes s in successors(n) 
   Changed = Changed U { s };

Reaching Definitions
for all nodes n in N 
 OUT[n] = emptyset; 
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; 

while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };

    IN[n] = emptyset;
    for all nodes p in predecessors(n) 
  IN[n] = IN[n] U OUT[p];

    OUT[n] = GEN[n] U (IN[n] - KILL[n]);

    if (OUT[n] changed)
      for all nodes s in successors(n) 
   Changed = Changed U { s };

Liveness
for all nodes n in N - { Exit } 
 IN[n] = emptyset;
OUT[Exit] = emptyset; 
IN[Exit] = use[Exit];
Changed = N - { Exit };

while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };
    
 OUT[n] = emptyset;
    for all nodes s in successors(n) 
  OUT[n] = OUT[n] U IN[p];

 IN[n] = use[n] U (out[n] - def[n]);

    if (IN[n] changed)
      for all nodes p in predecessors(n)
         Changed = Changed U { p };



Comparison
Available Expressions
for all nodes n in N
 OUT[n] = E;  
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; 

while (Changed != emptyset)
   choose a node n in Changed;
    Changed = Changed - { n };

    IN[n] = E; 
    for all nodes p in predecessors(n) 
  IN[n] = IN[n] Ç OUT[p];

    OUT[n] = GEN[n] U (IN[n] - KILL[n]);

    if (OUT[n] changed)
       for all nodes s in successors(n) 
   Changed = Changed U { s };

Reaching Definitions
for all nodes n in N 
 OUT[n] = emptyset; 
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; 

while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };

    IN[n] = emptyset;
    for all nodes p in predecessors(n) 
  IN[n] = IN[n] U OUT[p];

    OUT[n] = GEN[n] U (IN[n] - KILL[n]);

    if (OUT[n] changed)
      for all nodes s in successors(n) 
   Changed = Changed U { s };



Comparison
Reaching Definitions
for all nodes n in N 
 OUT[n] = emptyset; 
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; 

while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };

    IN[n] = emptyset;
    for all nodes p in predecessors(n) 
  IN[n] = IN[n] U OUT[p];

    OUT[n] = GEN[n] U (IN[n] - KILL[n]);

    if (OUT[n] changed)
      for all nodes s in successors(n) 
   Changed = Changed U { s };

Liveness
for all nodes n in N
 IN[n] = emptyset;
OUT[Exit] = emptyset; 
IN[Exit] = use[Exit];
Changed = N - { Exit };

while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };
    
 OUT[n] = emptyset;
    for all nodes s in successors(n) 
  OUT[n] = OUT[n] U IN[s];

 IN[n] = use[n] U (out[n] - def[n]);

    if (IN[n] changed)
      for all nodes p in predecessors(n)
         Changed = Changed U { p };



Basic Idea

Information about program represented using 
values from algebraic structure called lattice
Analysis produces lattice value for each program 
point

Two flavors of analysis
• Forward dataflow analysis [e.g., Reachability]
• Backward dataflow analysis [e.g. Live Variables]



Forward Dataflow Analysis

Analysis propagates values forward through control flow 
graph with flow of control
• Each node has a transfer function f

– Input – value at program point before node
– Output – new value at program point after node

• Values flow from program points after predecessor 
nodes to program points before successor nodes

• At join points, values are combined using a merge 
function 



Backward Dataflow Analysis

Analysis propagates values backward through control flow 
graph against flow of control

– Each node has a transfer function f
• Input – value at program point after node
• Output – new value at program point before node

– Values flow from program points before successor 
nodes to program points after predecessor nodes

– At split points, values are combined using a merge 
function



Partial Orders

Set P
Partial order relation £ such that "x,y,zÎP
• x £ x     (reflexive)
• x £ y and y £ x implies x = y (antisymmetric)
• x £ y and y £ z implies x £ z (transitive)

Can use partial order to define
• Upper and lower bounds
• Least upper bound
• Greatest lower bound



Upper Bounds

If S Í P then
• xÎP is an upper bound of S if "yÎS. y £ x
• xÎP is the least upper bound of S if
• x is an upper bound of S, and 
• x £ y for all upper bounds y of S

• Ú - join, least upper bound, lub, supremum, sup
• Ú S is the least upper bound of S
• x Ú y is the least upper bound of {x,y}



Lower Bounds

If S Í P then
• xÎP is a lower bound of S if "yÎS. x £ y
• xÎP is the greatest lower bound of S if
• x is a lower bound of S, and 
• y £ x for all lower bounds y of S

• Ù - meet, greatest lower bound, glb, infimum, inf
• Ù S is the greatest lower bound of S
• x Ù y is the greatest lower bound of {x,y}



Covering

x< y if x £ y and x¹y 
x is covered by y (y covers x) if
• x < y, and
• x £ z < y implies x = z

Conceptually, y covers x if there are no elements 
between x and y



Example
P = { 000, 001, 010, 011, 100, 101, 110, 111}

(standard boolean lattice, also called hypercube)
x £ y is equivalent to (x bitwise-and y) = x

111

011
101

110

010
001

000

100

Hasse Diagram
• If y covers x

• Line from y to x
• y above x in diagram



Lattices
Consider poset (P,£) and the operators Ù (meet) and Ú (join) 

If for all x,yÎP there exist x Ù y and x Ú y,    
                     then P is a lattice.
If for all S Í P there exist ÙS and ÚS        
                     then P is a complete lattice.
All finite lattices are complete

Example of a lattice that is not complete: Integers Z
• For any x, yÎZ, x Ú y = max(x,y), x Ù y = min(x,y)
• But Ú Z and Ù Z do not exist
• Z È {+¥,-¥ } is a complete lattice



Top and Bottom

Greatest element of P (if it exists) is top (⊤)
• "a Î L . a Ú ⊤	= ⊤
• Note: "a Î L . a ≤ ⊤	and ⊤ ∧ 𝑎 = 𝑎

Least element of P (if it exists) is bottom (^)
• "a Î L . a ∧ ^=^
• Note: "a Î L . ^ ≤ 𝑎	and ^ ∨ 𝑎 = 𝑎



Connection Between £, Ù, and Ú
The following 3 properties are equivalent:
• x £ y
• x Ú y = y 
• x Ù y = x

Let’s prove:
• x £ y implies x Ú y = y and x Ù y = x
• x Ú y = y implies x £ y
• x Ù y = x implies x £ y

Then by transitivity, we can obtain 
• x Ú y = y implies x Ù y = x 
• x Ù y = x implies x Ú y = y



Connecting Lemma Proofs

Thm: x £ y implies x Ú y = y
Proof:
• x £ y implies y is an upper bound of {x,y}.
• Any upper bound z of {x,y} must satisfy y £ z.
• So y is least upper bound of {x,y} and x Ú y = y

Thm: x £ y implies x Ù y = x
Proof:
• x £ y implies x is a lower bound of {x,y}.
• Any lower bound z of {x,y} must satisfy z £ x.
• So x is greatest lower bound of {x,y} and x Ù y = x



Connecting Lemma Proofs

Thm: x Ú y = y implies x £ y
Proof:
• y is an upper bound of {x,y} implies x £ y

Thm: x Ù y = x implies x £ y
Proof:
• x is a lower bound of {x,y} implies x £ y



Lattices as Algebraic Structures

We have defined Ú and Ù in terms of £
We will now define £ in terms of Ú and Ù
• Start with Ú and Ù as arbitrary algebraic operations 

that satisfy associative, commutative, idempotence, 
and absorption laws

• We will define £ using Ú and Ù
• We will show that £ is a partial order

Intuitive concept of Ú and Ù as information combination 
operators (or, and) or set operations (union, intersection)



Algebraic Properties of Lattices

Assume arbitrary operations Ú and Ù such that
• (x Ú y) Ú z = x Ú (y Ú z) (associativity of Ú)
• (x Ù y) Ù z = x Ù (y Ù z) (associativity of Ù)
• x Ú y = y Ú x   (commutativity of Ú)
• x Ù y = y Ù x   (commutativity of Ù)
• x Ú x = x   (idempotence of Ú)
• x Ù x = x   (idempotence of Ù)
• x Ú (x Ù y) = x  (absorption of Ú over Ù)
• x Ù (x Ú y) = x  (absorption of Ù over Ú)



Connection Between Ù and Ú 
x Ú y = y if and only if x Ù y = x
Proof (‘if ’):  x Ú y = y   =>   x = x Ù y

x = x Ù (x Ú y) (by absorption)
   = x Ù y  (by assumption)

Proof (‘only if ’):  x Ù y = x   =>   y = x Ú y
y = y Ú (y Ù x) (by absorption)
   = y Ú (x Ù y) (by commutativity)
   = y Ú x  (by assumption)
   = x Ú y  (by commutativity)



Properties of £

Define: x £ y if x Ú y = y
Proof of transitive property. Must show that
  x Ú y = y and y Ú z = z implies x Ú z = z

x Ú z = x Ú (y Ú z) (by assumption)
         = (x Ú y) Ú z  (by associativity)
         = y Ú z  (by assumption)
          = z   (by assumption)



Properties of £

Proof of asymmetry property. Must show that
 x Ú y = y and y Ú x = x implies x = y

x = y Ú x (by assumption)
   = x Ú y (by commutativity)
   = y  (by assumption)

Proof of reflexivity property. Must show that
 x Ú x = x, which follows directly

  x Ú x = x (by idempotence)



Properties of £

Induced operation £ agrees with original 
definitions of Ú and Ù, i.e., 
• x Ú y = sup {x, y}
• x Ù y = inf {x, y}



Proof of x Ú y = sup {x, y}

Consider any upper bound u for x and y.
Given x Ú u = u and y Ú u = u, must show        
x Ú y £ u, i.e., (x Ú y) Ú u = u

u = x Ú u  (by assumption)
   = x Ú (y Ú u) (by assumption)
   = (x Ú y) Ú u (by associativity)



Proof of x Ù y = inf {x, y}

• Consider any lower bound L for x and y.
• Given x Ù L = L and y Ù L = L, must show 

        L £ x Ù y, i.e., (x Ù y) Ù L = L
L = x Ù L  (by assumption)
  = x Ù (y Ù L)  (by assumption)
  = (x Ù y) Ù L  (by associativity)



Semi-lattice (P, Ù)
Set P and binary operation Ù such that "x,y,zÎP

• x Ù x = x    (idempotent)
• x Ù y =  y Ù x implies x = y  (commutative)
• (x Ù y) Ù z = x Ù (y Ù z)   (associative)

The operation Ù imposes a partial order on P

If ((L, £), Ù, Ú) is a lattice, then 
• (L, Ù) is a meet semi-lattice
• (L, Ú) is a join semi-lattice

Give us more flexibility to define the analysis. 
• Since our analyses deal with complete lattices, we will represent 

the framework on them, but it can also be defined on semi-lattices
• Some dataflow analyses can be only represented on semi-lattices



Announcements and Plan

• Project II: 
• Will be released this week. Please start early. 

• 02/24 class is cancelled; we will be having a class on 04/12
• What we covered on the previous day:

• Theory of partial orders, meets and joins

• Today’s plan:
• A small revision
• Relate the theory to dataflow analysis



Chains
A poset (S, £) is a chain if "x,yÎS. y £ x or x £ y 

Height of a poset/lattice: the size of the maximum chain. 

(S, £) is finite if it has the finite height.

P satisfies the ascending chain condition if  for all sequences x1 £ 
x2 £ …there exists n such that xn = xn+1 = …
• When a particular ascending chain has the property that xn = 

xn+1 = … we say that it stabilizes
• Then ascending chain condition means that all ascending chains 

stabilize



From one variable to more
If L is a poset then so is the Cartesian product LxL:

Let (𝐿!, ≤!)	 and (𝐿", ≤")	be posets.  Then (𝐿∗, ≤∗)	is also a poset, 
where 
𝐿∗ = 𝑙!, 𝑙" 	 𝑙! ∈ 𝐿!, 𝑙" ∈ 𝐿"}  and 𝑙!!, 𝑙"! ≤∗ 𝑙!", 𝑙""  iff 
𝑙!! ≤! 𝑙!" and 𝑙"! ≤" 𝑙""

This construction extends immediately on lattices, so that for S ⊆
𝐿∗, we define ⊥∗= ⊥!, ⊥" , we define
𝑔𝑙𝑏(𝑌) = (𝑔𝑙𝑏 	𝑙! 𝑙!,$ ∈ Y, 𝑔𝑙𝑏 	𝑙" ,$ , 𝑙" ∈ 𝑌) and same for 
𝑙𝑢𝑏 and ⊤∗

⊥

See Nielsen, Nielsen and Hankin book



From one variable to more
Total function space (S -> L) :
Let (𝐿, ≤)	 be a poset, 𝑆 a set and 𝑓 total function. Then (𝐿&, ≤&)	is 
also a poset, where 
𝐿& = {𝑓: 𝑆 → 𝐿} and 𝑓′ ≤& 𝑓′′ iff ∀𝑠 ∈ 𝑆	. 𝑓′ 𝑠 ≤ 𝑓′′ 𝑠 . 

To extend to lattices, we define ⊥&= 𝜆𝑠	. ⊥	 and
𝑔𝑙𝑏 𝑌 = 𝜆𝑠	 . 	 𝑔𝑙𝑏' 	𝑓(𝑠)	 𝑓 ∈ 𝑌) and same for 𝑙𝑢𝑏 and ⊤&

Monotone Function Space (L1 -> L2) : 
Let (𝐿!, ≤!)	 and (𝐿", ≤")	be posets and 𝑓 monotone. Then (𝐿&, ≤&)	
is also a poset, where ⊥&= 𝜆𝑠	. ⊥" and
𝐿& = {𝑓: 𝐿! → 𝐿"} and 𝑓′ ≤& 𝑓′′ iff ∀𝑙! ∈ 𝐿!	. 𝑓′ 𝑙! ≤" 𝑓′′(𝑙!)



Application to Dataflow Analysis

Dataflow information will be lattice values
• Transfer functions operate on lattice values
• Solution algorithm will generate increasing 

sequence of values at each program point
• Ascending chain condition will ensure 

termination

We will use Ú to combine values at control-flow 
join points



Transfer Functions

Transfer function f: P®P is defined for each 
node in control flow graph
• Maps lattice elements to lattice elements

The function f models effect of the node on the 
program information



Transfer Functions
Each dataflow analysis problem has a set F of transfer 
functions f: P®P .  This set F contains:  
• Identity function belongs to the set,  iÎF
• F must be closed under composition:             

    "f,gÎF. the function h = lx.f(g(x)) ÎF
• Each f ÎF must be monotonic:   

 x £ y implies f(x) £ f(y)
• Sometimes all f ÎF are distributive*:                       

f(x Ú y) = f(x) Ú f(y)
• Note that Distributivity implies monotonicity

*One can also define distributivity in terms of Ù (“meet”): f(x Ù y) = f(x) Ù f(y)



Distributivity Implies Monotonicity

Proof.* 
Assume distributivity: f(x Ú y) = f(x) Ú f(y)

Must show: x Ú y = y implies f(x) Ú f(y) = f(y)
f(y) = f(x Ú y) (by assumption)
       = f(x) Ú f(y) (by distributivity)

*For f(x Ù y) = f(x) Ù f(y),  show x Ù y = x => f(x) Ù f(y) = f(x);  f(x) = f(x Ù y) = f(x) Ù f(y)



Knaster-Tarsky Fixed-point Theorem
Let:
• (L, £, Ù, Ú, ⊤,	⊥) be a complete lattice
• f : L → L be a monotonic function
• fix ( f ) is the set of fixed points of f

The set fix ( f ) with relation £, and operators Ù, Ú is 
forming a complete lattice. 
• There will be a least fixed-point and greatest fixed point

Consequences:
• f has at least one fixpoint
• That fixpoint is the largest element in the chain 

           ⊥, f(⊥), f(f(⊥)), f(f(f(⊥))), … , fn(⊥)



Putting the Pieces Together…



Forward Dataflow Analysis
Simulates execution of program forward with flow of control

Tuple (G, (L, ≤), F, I) – (graph, (lattice), transfer fs., initial val.)

For each node n Î G, we have
• inn – value at program point before n
• outn – value at program point after n
• fn Î F – transfer function for n (given inn, computes outn)
• Signature of inn, outn, fn : L ® L

Requires that solution satisfies
• "n.                  outn = fn(inn)
• "n ¹ n0.           inn = Ú { outm . m in pred(n) }
• inn0 = I, summarizes information at the start of program



Dataflow Equations

Compiler processes program to obtain a set of 
dataflow equations

 outn :=        fn(inn)

  inn   :=  Ú { outm . for each m in pred(n) }

Conceptually separates analysis problem from program



Worklist Algorithm for Solving 
Forward Dataflow Equations
for each n do outn := fn(^)

inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }

while worklist ¹ Æ do
 remove a node n from worklist
 inn  := Ú { outm . m in pred(n) }
 outn := fn(inn)
 if outn changed then 
  worklist := worklist È succ(n)



Correctness Argument
Why does the result satisfy dataflow equations?

• Whenever it processes a node n, algorithm sets outn := fn(inn) 
Therefore, the algorithm ensures that outn = fn(inn) 

• Whenever outm changes, it puts succ(m) on worklist. Consider 
any node n Î succ(m). It will eventually come off worklist and 
algorithm will set 
  inn := Ú { outm . m in pred(n) }

to ensure that inn = Ú { outm . m in pred(n) }

• So final solution will satisfy dataflow equations 

• Need also to ensure that the dataflow equalities correspond to 
the states in the program execution (this comes later!)



Termination Argument
Why does algorithm terminate?

Sequence of values taken on by INn or OUTn is a chain. If 
values stop increasing, worklist empties and algorithm 
terminates.

If lattice has ascending chain property, algorithm terminates
• Algorithm terminates for finite lattices
• For lattices with infinite length, use widening operator

• Detect lattice values that may be part of infinitely ascending 
chain

• Artificially raise value to least upper bound of chain



Termination Argument (Details)

• For finite lattice (L, ≤)
• Start: each node n ∈	CFG has an initial IN set, called IN0[n]
• When F is monotone, for each n, successive values of IN[n] 

form a non-decreasing sequence.
• Any chain starting at x	∈	L	has at most cx elements
• x=IN[n] can increase in value at most cx times
• Then C = max

(∈*+,
c-.[(]	is finite

• On every iteration, at least one IN[.] set must increase in value
• If loop executes N × C times, all IN[.] sets would be ⊤
• The algorithm terminates in O(N × C) steps

(but this is conservative)



Speed of Convergence
Loop Connectedness d(G): for a reducible CFG G, it is the 
maximum number of back edges in any acyclic path in G. 

Kam & Ullman, 1976: 
• The depth-first version of the iterative algorithm halts in at most 

d(G) + 3 passes over the graph
• If the lattice L has ⊤, at most d(G) + 2 passes are needed

In practice:
• d(G) < 3, so the algorithm makes less than 6 passes over the graph

For mode details, see also Properties of data flow frameworks, 
Marlowe and Ryder (1990)



General Worklist Algorithm 
(Reminder)

for each n do outn := fn(^)

inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }

while worklist ¹ Æ do
 remove a node n from worklist
 inn  := Ú { outm . m in pred(n) }
 outn := fn(inn)
 if outn changed then 
  worklist := worklist È succ(n)



Reaching Definitions Algorithm 
(Reminder)
for all nodes n in N 
 OUT[n] = emptyset; // OUT[n] = GEN[n];
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };

    IN[n] = emptyset;
    for all nodes p in predecessors(n) 
  IN[n] = IN[n] U OUT[p];

    OUT[n] = GEN[n] U (IN[n] - KILL[n]);

    if (OUT[n] changed)
       for all nodes s in successors(n) 
   Changed = Changed U { s };



Reaching 
Definitions 
for all nodes n in N 
 OUT[n] = emptyset; 
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; 

while (Changed != emptyset)
  choose a node n in Changed;
  Changed = Changed - { n };

  IN[n] = emptyset;
  for all nodes p in predecessors(n) 
 IN[n] = IN[n] U OUT[p];

  OUT[n] = GEN[n] U (IN[n] - KILL[n]);

  if (OUT[n] changed)
  for all nodes s in succ(n) 
    Changed = Changed U { s };

General Worklist
for each n do outn := fn(^)

inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }

while worklist ¹ Æ do
   remove a node n from worklist
   
   inn  := Ú { outm . m in pred(n) }
   

   outn := fn(inn)
   
    if outn changed then 
      worklist := worklist È succ(n)



Reaching Definitions

P = powerset of set of all definitions in program (all 
subsets of set of definitions in program)
Ú = È (order is Í)
^ = Æ
I = inn0 = ^
F = all functions f of the form f(x) = a È (x-b)
• b is set of definitions that node kills
• a is set of definitions that node generates

General pattern for many transfer functions
• f(x) = GEN È (x-KILL)



Does Reaching Definitions 
Framework Satisfy Properties?

Í satisfies conditions for £
• Reflexivity: x Í x
• Antisymmetry: x Í y and y Í x implies y = x 
• Transitivity: x Í y and y Í z implies x Í z 

F satisfies transfer function conditions
• Identity: lx.Æ È (x- Æ) = lx.xÎF 
• Distributivity: Will show f(x È y) = f(x) È f(y)   

   f(x) È f(y) = (a È (x – b)) È (a È (y – b))
                  = a È (x – b) È (y – b) = a È ((x È y) – b)
                  = f(x È y)



Does Reaching Definitions 
Framework Satisfy Properties?

What about composition of F?
Given f1(x) = a1 È (x-b1) and f2(x) = a2 È (x-b2)
we must show f1(f2(x)) can be expressed as a È (x - b)

  f1(f2(x)) = a1 È ((a2 È (x-b2)) - b1)
              = a1 È ((a2 - b1) È ((x-b2) - b1))
              = (a1 È (a2 - b1)) È ((x-b2) - b1))
              = (a1 È (a2 - b1)) È (x-(b2 È b1))

• Let a = (a1 È (a2 - b1)) and b = b2 È b1

• Then f1(f2(x)) = a È (x – b)



General Result
All GEN/KILL transfer function frameworks 
satisfy the three properties:

• Identity
• Distributivity
• Composition

And all of them converge rapidly



Available Expressions

P = powerset of set of all expressions in program 
(all subsets of set of expressions)
Ú = Ç (order is Ê)
^ = P 
I = inn0 = Æ
F = all functions f of the form f(x) = a È (x-b)
• b is set of expressions that node kills
• a is set of expressions that node generates

Another GEN/KILL analysis



Concept of Conservatism

Reaching definitions use È as join
• Optimizations must take into account all 

definitions that reach along ANY path
Available expressions use Ç as join
• Optimization requires expression to be 

available along ALL paths

Optimizations must conservatively take all 
possible executions into account.  



Backward Dataflow Analysis
• Simulates execution of program backward against the 

flow of control
• For each node n, we have

– inn – value at program point before n
– outn – value at program point after n
– fn – transfer function for n (given outn, computes inn)

• Require that solution satisfies
– "n. inn = fn(outn)
– "n Ï Nfinal. outn = Ú { inm . m in succ(n) }
– "n Î Nfinal = outn = O
– Where O summarizes information at end of program



Worklist Algorithm for Solving 
Backward Dataflow Equations

for each n do inn := fn(^)
for each n Î Nfinal do outn := O; inn := fn(outn)
worklist := N - Nfinal 

while worklist ¹ Æ do
 remove a node n from worklist
 outn := Ú { inm . m in succ(n) }
 inn := fn(outn)
 if inn changed then 
  worklist := worklist È pred(n)



Live Variables

P = powerset of set of all variables in program 
(all subsets of set of variables in program)
Ú = È (order is Í)
^ = Æ
O = Æ
F = all functions f of the form f(x) = a È (x-b)
• b is set of variables that node kills
• a is set of variables that node reads



Meaning of Dataflow Results

Concept of program state s for control-flow graphs
• Program point n where execution is located                     

(n is node that will execute next)
• Values of variables in program

Each execution generates a trajectory of states:
• s0;s1;…;sk,where each si Î S
• si+1 generated from si by executing basic block to 

1. Update variable values
2. Obtain new program point n



Relating States to Analysis Result

• Meaning of analysis results is given by an abstraction 
function AF : ST®P

• Correctness condition:  require that for all states s 
 
                            AF(s) £ inn

where n is the next statement to execute in state s



Sign Analysis Example

Sign analysis - compute sign of each variable v
Base Lattice: P = flat lattice on {-,0,+}

Actual lattice records a value for each variable
• Example element: [a®+, b®0, c®-]

- 0 +

TOP

BOT



Interpretation of Lattice Values

If value of v in lattice is:
• ^: no information about the sign of v
• −	: variable v is negative
• 0 : variable v is 0 
• + : variable v is positive
•    : v may be positive or negative or zero

What is abstraction function AF?
• AF([v1,…,vn]) = [sign(v1), …, sign(vn)] 

• sign 𝑥 = )
0 if v = 0
+ if v > 0
− if v < 0 

^



Transfer Functions
Transfer function modifies a map x : (Varname -> Sign)
If n of the form v = c
• fn(x) = x[v®+] if c is positive
• fn(x) = x[v®0] if c is 0
• fn(x) = x[v®-] if c is negative

If n of the form v1 = v2 * v3
• fn(x) = let newsign = x[v2] Ä x[v3] in

              x[v1® newsign]

Init = for each variable assign TOP 
 (uninitialized variables may have any sign)



Operation Ä on Lattice
Ä ^ - 0 +

^ ^ ^ 0 ^ ^

− ^ + 0 −

0 0 0 0 0 0

+ ^ − 0 +

^ 0^ ^ ^

^

^

^

^



Sign Analysis Example

b = -1 b = 1

a = 1

[a®+][a®+]

[a®+, b®+][a®+, b®-]

[a®+, b®TOP]
c = a*b

[a®+, b®TOP,c ®TOP]



Imprecision In Example

b = -1 b = 1

a = 1

[a®+][a®+]

[a®+, b®+][a®+, b®-]

[a®+, b®TOP]
c = a*b

Abstraction Imprecision:
[a®1] abstracted as [a®+] 
 

Control Flow Imprecision:
[b®TOP] summarizes results of all executions. 
(In any concrete execution state s, AF(s)[b]¹TOP)
 



General Sources of Imprecision
Abstraction Imprecision
• Concrete values (integers) abstracted as lattice values 

(-,0, and +)
• Lattice values less precise than execution values
• Abstraction function throws away information

Control Flow Imprecision
• One lattice value for all possible control flow paths
• Analysis result has a single lattice value to summarize 

results of multiple concrete executions
• Join operation Ú moves up in lattice to combine values 

from different execution paths
• Typically if x £ y, then x is more precise than y



Why To Allow Imprecision?

Make analysis tractable

Unbounded sets of values in execution
• Typically abstracted by finite set of lattice values

Execution may visit unbounded set of states
• Abstracted by computing joins of different paths



Correctness of Solution

Correctness condition: 
• " v .  AF(s)[v] £ in(n)[v] (n is node, s is state)
• Reflects possibility of imprecision

Proof:
• By the induction on the structure of the 

computation that produces s



Abstraction Function Soundness
(Sign Analysis)

Will show " v. AF(s)[v] £ in(n)[v] (n is node for s)
by induction on length of computation that 

produced s

Base case:
• " v. in(n0)[v] = TOP, which implies that
• " v. AF(s)[v] £ TOP



Abstraction Function Soundness: 
Induction step (Sign Analysis)
Assume " v. AF(s)[v] £ in(n)[v] for computations of length k
Prove for computations of length k+1

Proof:
We are given s (state), n (node to execute next), and in(n). Goal: 
Find p (the node that just executed), sp(the previous state), and in(p)

• By induction hypothesis " v. AF(sp)[v] £ in(p) [v]

• Case analysis on form of n:
• If n of the form v = c, then 

1. s[v] = c and outp [v] = sign(c), so   
      AF(s)[v] = sign(c) = out(p) [v] £ in(n)[v]

2. If v’¹v, s[v’] = sp [v’] and out(p) [v’] = in(p)[v’], so 
AF(s)[v’] = AF(sp)[v’] £ in(p)[v’] = out(p)[v’] £ in(n)[v’]

• Similar reasoning if n of the form v1 = v2 op v3



Augmented Execution States

Abstraction functions for some analyses require 
augmented execution states

• Reaching definitions: states are augmented 
with definition that created each value

• Available expressions: states are 
augmented with expression for each value



Meet Over Paths* Solution
What solution would be ideal for a forward dataflow problem?
 
Consider a path p = n0, n1, …, nk, n to a node n 
 (note that for all i, ni Î pred(ni+1))

The solution must take this path into account:
fp (^) = (fnk(fnk-1(…fn1(fn0(^)) …)) £ inn

So the solution must have the property that
   Ú{fp (^) . p is  a path to n} £ in(n)
and ideally 

  Ú{fp (^) . p is  a path to n} = in(n)

* Name exists for historical reasons; this will be a join-over-paths in our formulation 
for this problem. One can reformulate this with Ù (“meet”) instead
See Nielsen, Nielsen and Hankin book for more on “join” and Dragon book for the classical “meet” formalization



Soundness Proof of Analysis 
Algorithm
Property to prove:

For  all paths p to n,  fp (^) £ in(n)
Proof is by induction on length of p
• Uses monotonicity of transfer functions
• Uses following lemma

Lemma:
Worklist algorithm produces a solution such that
  out(n)  =  fn(in(n))

if n Î pred(m) then out(n) £ in(m)



Proof

Base case: p is of length 1
• Then p = n0 and fp(^) = ^ = in(n0)

Induction step:
• Assume theorem for all paths of length k
• Show for an arbitrary path p of length k+1



Induction Step Proof

p = n0, …, nk, n
Must show fk(fk-1(…f1(f0(^)) …)) £ in(n)
• By induction (fk-1(…f1(f0(^)) …)) £ in(nk)
• Apply fk to both sides, by monotonicity we get

  fk(fk-1(…f1(f0(^)) …)) £ fk(in(nk)) 
• By lemma, fk(in(nk)) = out(nk)
• By lemma, out(nk) £ in(n)
• By transitivity,  fk(fk-1(…f1(f0(^)) …)) £ in(n)



Distributivity

Distributivity preserves precision

If framework is distributive, then worklist 
algorithm produces the meet over paths 
solution
• For all n:

  Ú{fp (^) . p is  a path to n} = inn



Soundness Proof of Analysis Algorithm

Connections between MOP and worklist solution:
• [Kildall, 1973] The iterative worklist algorithm: (1) converges 

and (2) computes a MFP (in our “join” case the least fixed point; 
in classical paper “meet”, it computes the maximum fixed point) 
solution of the set of equations using the worklist algorithm

• [Kildall, 1973] If F is distributive, MOP = MFP
  Ú {fp (^) . p is  a path to n} = inn

• [Kam & Ullman, 1977] If F is monotone, MOP £ MFP
(i.e. MFP is more conservative)

Note: if you reformulate the framework formulas with the “meet” operator,
 in that case MFP £ MOP



Lack of Distributivity Example
Constant Calculator:  Flat Lattice on Integers

Actual lattice records a value for each variable
• Example element: [a®3, b®2, c®5]

Transfer function:
• If n of the form v = c, then fn(x) = x[v®c]
• If n of the form v1 = v2+v3, fn(x) = x[v1®x[v2] + x[v3]]

-1 10

TOP

BOT

-2 2 ……



Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a®3, b®2][a®2, b®3]

[a®TOP, b®TOP]
c = a+b

[a®TOP, b®TOP, c ®TOP]

Lack of Distributivity Imprecision: 
[a®TOP, b®TOP, c®5] more precise
 

What is the meet over all paths solution?



Make Analysis Distributive

Keep combinations of values on different paths

a = 2
b = 3

a = 3
b = 2

{[a®3, b®2]}{[a®2, b®3]}

{[a®2, b®3], [a®3, b®2]} 
c = a+b

{[a®2, b®3,c®5], [a®3, b®2,c®5]} 



Discussion of the Solution

It basically simulates all combinations of values in 
all executions
• Exponential blowup
• Nontermination because of infinite ascending chains

Terminating solution: 
• Use widening operator to eliminate blowup         

(can make it work at granularity of variables)
• However, loses precision in many cases
• Not trivial to select optimal point to do widening





Bonus #1: SCCP Revisited

Lattice L≡{⊤, Ci,⊥}.
• ⊤ intuitively means “May be constant.”
• ⊥ intuitively means “Not constant.”

A Partial Order £: 
• ⊥ £ Ci for any Ci.
• Ci £ ⊤ for any Ci.
• Ci £ Cj (i.e., no ordering).

Meet of X and Y (X⊓Y) is the greatest value Z, s.t. Z £ 
X and Z £ Y.



SCCP Revisited
Assume:
• Only assignment or branch statements
• Every non-φ statement is in separate BB 

Key Ideas:
1. Constant propagation lattice = {⊤, Ci,⊥}
2. 2.Initially: every def. has value⊤(“may be constant”).Initially: 

every CFG edge is infeasible, exceptedges froms
3. 3. Use 2 worklists: FlowWL, SSAWL

Highlights:
• Visit S only if some incoming edge is executable
• Ignore φ-argument if incoming CFG edge not executable
• If variable changes value, add SSA out-edges to SSAWL
• If CFG edge executable, add to FlowWL



SCCP Revisited
SCCP()
Initialize(ExecFlags[], LatCell[], FlowWL, SSAWL);
while ((Edge E = GetEdge(FlowWL ∪ SSAWL)) != 0)
    if (E is a flow edge && ExecFlag[E] == false)
       ExecFlag[E] = true
       VisitPhi(ɸ) ∀ ɸ ∈ E->sink
       if (first visit to E->sink via flow edges)
           VisitInst(E->sink)
       if (E->sink has only one outgoing flow edge Eout)
           add Eout to FlowWL
    else if (E is an SSA edge)

if (E->sink is a ɸ node)
           VisitPhi(E->sink)
       else if (E->sink has 1 or more executable in-edges)
           VisitInst(E->sink)



SCCP Revisited
VisitPhi(ɸ) :
   for (all operands Uk of ɸ)
      if (ExecFlag[InEdge(k)] == true)
         LatCell(ɸ) ⊓ = LatCell(Uk)
         if (LatCell(ɸ) changed)
             add SSAOutEdges(ɸ) to SSAWL

VisitInst(S) : 
   val = Evaluate(S)
   LatCell(S) = val
   if (LatCell(S) changed) // cannnot be Top
      if (S is Assignment)
      add SSAOutEdges(S) to SSAWL
   else // S must be a Branch
      Add one or both outgoing edges to FlowWL



Bonus #2: Partial Redundancy 
Elimination

Finds additional optimization opportunities, redundant only 
over some branches
Combines multiple dataflow analyses (e.g. commonly 5)

Lazy code motion:
• Compute available expressions
• Compute very busy expressions 

• an expression is very busy iff along every path from p there 
is an expression A op B before redefining A or B. 

• Compute an earliest placement for each expression 
• Move expressions down the CFG while the semantics 

remain the same
References:
J. Knoop, O. Rüthing, and B. Steffen, “Lazy Code Motion,” In PLDI, 1992.
1. Original paper: E. Morel and C. Renvoise, “Global optimization by suppression of partial redundancies,” CACM 22(2), Feb, 1979.



Look Forward

We will return to these problems later in the semester
• Interprocedural analysis: how to handle function 

calls and global variables in the analysis?
• Abstract interpretation: how to automate analysis 

with infinite chains and rich abstract domains?

Additional readings: 
• Long comparison: Flemming Nielson; Hanne R. Nielson; Chris 

Hankin. Principles of Program Analysis (2004). Springer.  (available online)
• Short comparison:  Wolfgang Woegerer. A Survey of Static Program Analysis 

Techniques (available online)


