## CS 526

 Advanced CompilerConstruction
https://charithm.web.illinois.edu/cs526/sp2024/ (slides adapted from Sasa and Vikram)

## STATIC SINGLE ASSIGNMENT

The slides adapted from Vikram Adve

## References

Cytron, Ferrante, Rosen, Wegman, and Zadeck, "Efficiently Computing Static Single Assignment Form and the Control Dependence Graph,"
ACM Trans. on Programming Languages and Systems, I3(4), Oct. I99I, pp. 45I-490.

Muchnick, Section 8.II (partially covered).
Engineering a Compiler, Section 5.4.2 (partially covered).

## Constructing SSA Form

## Simple algorithm

I. insert $\varphi$-functions for every variable at every join (the beginning of CFG nodes with multiple incoming edges)
2. solve reaching definitions
3. rename each use to the def that reaches it (unique)

What's wrong with this approach?
I. too many $\varphi$-functions (precision)
2. too many $\varphi$-functions (space)
3. too many $\varphi$-functions (time)

## Where do we place $\varphi$-functions?

$$
\begin{aligned}
& V=. . . ; U=. . . ; W=. . . ; \\
& \text { if (...) then \{ } \\
& \text { V = ...; } \\
& \text { if (...) \{ } \\
& \mathrm{U}=\mathrm{V}+1 \text {; } \\
& \text { \} else \{ } \\
& \text { U = V + 2; } \\
& \text { \} } \\
& W=U+1 ; \\
& \text { \} }
\end{aligned}
$$

## Where do we place $\varphi$-functions?

$$
\begin{aligned}
& V 0=\ldots ; V 0=\ldots ; W 0=\ldots ; \\
& \text { if (...) then \{ } \\
& \mathrm{V} 1=\ldots \text {; } \\
& \text { if (...) \{ } \\
& \mathrm{U} 1=\mathrm{V} 1+1 ; \\
& \text { \} else \{ } \\
& \mathrm{U} 2=\mathrm{V} 1+2 \text {; } \\
& \text { \} } \\
& \text { V2 }=\varphi(\mathrm{V} 1, \mathrm{~V} 1) ; \mathrm{U} 3=\varphi(\mathrm{U} 1, \mathrm{U} 2) ; \mathrm{W} 1=\varphi(\mathrm{q} 0, \mathrm{~W} 0) \\
& W 1=U 3+1 ; \\
& \text { \} } \\
& \mathrm{V} 3=\varphi(\mathrm{V} 0, \mathrm{~V} 1) ; \mathrm{U} 4=\varphi(\mathrm{U} 0, \mathrm{U} 3) ; \mathrm{W} 2=\varphi(\mathrm{W} 0, \mathrm{~W} 1)
\end{aligned}
$$

## Intuition for SSA Construction

## Informal Conditions

If block $X$ contains an assignment to a variable $V$, then a $\varphi$-function must be inserted in each block $Z$ such that:
I. there is a non-empty path between $X$ and $Z$, and the value of $V$ computed in $X$ reaches $Z$
2. there is a path from the entry block (s) to $Z$ that does not go through $X$
there is a path that does not go through $X$, so some other value of $V$ reaches $Z$ along that path(ignore bugs due to uses of uninitialized variables). So, two values must be merged at $X$ with a $\varphi$
3. $Z$ is the first node on the path from $X$ to $Z$ that satisfies point 2
the $\varphi$ for the value coming from $X$ is placed in $Z$ and not in some earlier node on the path

## Intuition for SSA Construction

 Informal Conditions
## Iterating the Placement Conditions:

- After a $\varphi$ is inserted at $Z$, the above process must be repeated for $Z$ because the $\varphi$ is effectively a new definition of V .
- For each block $X$ and variable $V$, there must be at most one $\varphi$ for $V$ in $X$.
This means that the above iterative process can be done with a single worklist of nodes for each variable V , initialized to handle all original assignment nodes $X$ simultaneously.


## Minimal SSA

A program is in SSA form if:

- each variable is assigned a value in exactly one statement
- each use of a variable is dominated by the definition i.e., the use can refer to a unique name.

Minimal SSA: As few as possible $\varphi$-functions,
Pruned SSA: As few as possible $\varphi$-functions and no dead $\varphi$-functions (i.e., the defined variable is used later)

- One needs to compute liveness information
- More precise, but requires additional time


## SSA Construction Algorithm

## Steps: <br> I. Compute the dominance frontiers* <br> 2. Insert $\varphi$-functions <br> 3. Rename the variables

Thm. Any program can be put into minimal SSA form using the previous algorithm. [Reef to the paper for proof]

## Dominance in Flow Graphs (review)

Let $\mathrm{d}, \mathrm{dl}, \mathrm{d} 2, \mathrm{~d} 3$, n be nodes in G .
d dominates n ("d dom n") iff every path in $G$ from s to n contains d
d properly dominates $\mathbf{n}$ ("d pdom $n$ ") if $d$ dominates $n$ and $d \neq n$
$d$ is the immediate dominator of $n$ ("d idom $n$ ")
if $d$ is the last proper dominator on any path from initial node to $n$,

DOM(x) denotes the set of dominators of $x$,

Dominator tree*: the children of each node $d$ are the nodes $n$ such that "d idom n " ( d immediately dominates n )

## Dominance Frontier

The dominance frontier of node $X$ is the set of nodes $Y$ such that $X$ dominates a predecessor of Y , but X does not properly dominate Y *
$\mathbf{D F}(\mathbf{X})=\{Y \mid \exists P \in \operatorname{Pred}(Y): X \operatorname{dom} P$ and not $(X$ pdom $Y)\}$
We can split $\mathbf{D F}(\mathbf{X})$ in two groups of sets:

$$
D F_{\text {local }}(X) \equiv\{Y \in \operatorname{Succ}(X) \mid \text { not } X \text { idom } Y\}
$$

$$
\mathrm{DF}_{\mathrm{up}}(\mathrm{Z}) \equiv\{Y \in \mathrm{DF}(\mathrm{Z}) \mid \exists \mathrm{P} . \mathrm{P} \text { idom } \mathrm{Z} \text { and not }(\mathrm{P} \text { pdom } \mathrm{Y})\}
$$

One can show that:

$$
\operatorname{DF}(\mathrm{X})=\mathrm{DF}_{\text {local }}(\mathrm{X}) \cup \bigcup_{Z \in \operatorname{Children}(X)} \mathrm{DF}_{\mathrm{up}}(\mathrm{Z})
$$

* child, parent, ancestor, and descendant always refer to the dominator tree. predecessor, successor, and path always refer to CFG

Lemma 1. The dominance frontier equation (4) is correct.
Proof. Because dominance is reflexive, $D F_{\text {local }}(X) \subseteq D F(X)$. Because dominance is transitive, each child $Z$ of $X$ has $D F_{u p}(Z) \subseteq D F(X)$. We must still show that everything in $D F(X)$ has been accounted for. Suppose $Y \in$ $D F(X)$, and let $U \rightarrow Y$ be an edge such that $X$ dominates $U$ but does not strictly dominate $Y$. If $U=X$, then $Y \in D F_{\text {local }}(X)$, and we are done. If $U \neq X$, on the other hand, then there is a child $Z$ of $X$ that dominates $U$ but cannot strictly dominate $Y$ because $X$ does not strictly dominate $Y$. This implies that $Y \in D F_{u p}(Z)$.

## Dominance Frontier Algorithm

for each $X$ in a bottom-up traversal of the dominator tree (visit the node X in the tree after visiting its children):
$\mathrm{DF}(\mathrm{X}) \leftarrow \emptyset$
for each $Y \in \operatorname{succ}(X) / *$ local */
if not $X$ idom $Y$ then

$$
\operatorname{DF}(X) \leftarrow \operatorname{DF}(X) \cup\{Y\}
$$

for each $Z \in$ children $(X)$ /* up */
for each $Y \in \operatorname{DF}(Z)$
if not $X$ idom $Y$ then
$\mathrm{DF}(\mathrm{X}) \leftarrow \mathrm{DF}(\mathrm{X}) \cup\{Y\}$
(The paper also has the argument for correctness)

## Dominance and LLVM

| Main Page | Related Pages | Modules | Namespaces | Classes |
| :--- | :--- | :--- | :--- | :--- |
| File List | File Members |  |  |  |

## Dominators.h

Go to the documentation of this file.


``` 00002 //
00003 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //
00009 /
00010 // This file defines the DominatorTree class, which provides fast and efficient 00011 // dominance queries
00012 /
00013 / 00014
```


## DominanceFrontier.h

```
Go to the documentation of this file.
00001 //===- 1lvm/Analysis/DominanceFrontier.h - Dominator Frontiers --*- C++ -*-===//
00002 // The LLVM Compiler Infrastructure
00003 /I
The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details
00007 //
00008 //
00010 // This file defines the DominanceFrontier class, which calculate and holds the 00011 // dominance frontier for a function.
00012 //
00013 // This should be considered deprecated, don't add any more uses of this data
00014 // structure.
00015 //
00016
00017
00018 \#ifndef LLVM_ANALYSIS_DOMINANCEFRONTIER H
00018 \#ifndef LLVM_ANALYSIS_DOMINANCEFRONTIER_H
00019 \#define LLVM ANALYSIS DOMINANCEFRONTIER_H
00020
00021 \#include "llvm/IR/Dominators.h"
00022 \#include <map>
00023 \#include <set>
00024
00025 namespace llvm \{
00026
00027 //==
```



```
00029 ( Common base class for computing forward and inverse
00029 /// dominance frontiers for a function.
00030 ///
0031 template <class BlockT>
00032 class D
inanceFrontierBase
00034 typedef std::set<BlockT *> DomSetType;
poo35 typedef std::map<BlockT *, // Dom set for a bb 00036
00037 protected:
00038 typedef GraphTraits<BlockT *> BlockTraits
00039
```


## SSA Construction Algorithm

## Steps:

I. Compute the dominance frontiers
2. Insert $\varphi$-functions
3. Rename the variables

## Insert $\boldsymbol{\varphi}$-functions

for each variable V
HasAlready $\leftarrow \emptyset$
EverOnWorkList $\leftarrow \emptyset$
WorkList $\leftarrow \emptyset$
for each node $X$ that may modify $V$
EverOnWorkList $\leftarrow$ EverOnWorkList $\bigcup\{X\}$
WorkList $\leftarrow$ WorkList $\bigcup\{X\}$

## Insert $\boldsymbol{\varphi}$-functions

```
for each variable V
    HasAlready }\leftarrow
    EverOnWorkList }\leftarrow
    WorkList }\leftarrow
    for each node X that may modify V
    EverOnWorkList \leftarrow EverOnWorkList \{X}
    WorkList }\leftarrow\mathrm{ WorkList \ {X}
while WorkList }\not=
    remove X from WorkList
    for each Y }\inDF(X
    if Y & HasAlready then
        insert a }\phi\mathrm{ -node for V at Y
        HasAlready }\leftarrow HasAlready \{Y
        if Y & EverOnWorkList then
            EverOnWorkList \leftarrow EverOnWorkList \ {Y}
        WorkList }\leftarrow\mathrm{ WorkList }\bigcup{Y
```


## Renaming Variables*

Renaming definitions is easy - just keep the counter for each variable.

To rename each use of V :
(a) Use in non- $\boldsymbol{\varphi}$-functions: Refer to immediately dominating definition of $V(+\varphi$ nodes inserted for $V)$.
preorder on Dominator Tree!
(b) Use as a $\varphi$-function operand: Refer to the definition that immediately dominates the node with the incoming CFG edge (not the node with the $\varphi$-function)
rename the $\varphi$-operand when processing the predecessor basic block!

* For the full algorithm refer to the paper
$B 1: X=0$

$$
\operatorname{DF}_{\text {boale }}(X) \equiv\{Y \in \operatorname{Succ}(X) \mid \operatorname{not} X \operatorname{idom} Y\}
$$

CFG?
if (Coud 1) \{
$D_{u p}(Z) \equiv\{Y \in \operatorname{DF}(Z) \mid \exists P$. $P$ idom $Z$ and not $(P$ pdom $Y)\}$
DT? DF(B3)?
do $\{$

$$
\operatorname{DF}(X)=\operatorname{DF}_{\text {local }}(X) \cup \bigcup_{Z \in \operatorname{Children}(X)} D_{u p}(Z)
$$

$B_{2}: \quad x=x+f_{1}()$
do $\{$
$B_{3}:$

$$
x=x+f_{2}()
$$

3 while ( $\operatorname{cond} 2$ )
$\left.B_{4}: \quad x=x+f 3 C\right)$
3 while (cond 3)
J
$B_{5}$ : veturu $x$

## Translating Out of SSA Form

## Overview:

I. Dead-code elimination (prune dead $\varphi s$ )
2. Replace $\varphi$-functions with copies in predecessors
3. Register allocation with copy coalescing

Before Step 2


After Step 2


## Control Dependence

Def. Postdomination: node $p$ postdominates a node $d$ iff all paths to the exit node of the graph starting at $d$ must go through $p$

Def. In a CFG, node $Y$ is control-dependent on node B if

- There is a path B,NI,N2, ..,Nk, Y, such that $\mathbf{Y}$ postdominates NI ...Nk (possibly empty), and
- Y does not postdominate B

Def. Reverse Control Flow Graph (RCFG) of a CFG has the same nodes as CFG and has edge $Y \rightarrow X$ if $X \rightarrow Y$ is an edge in CFG.

- $\quad p$ is a postdominator of $d$ iff $p$ dominates $d$ in the RCFG.


## Computing Control Dependence

Key observation: Node $Y$ is control-dependent on $B$ iff $B \in D F(Y)$ in RCFG.

## Algorithm:

I. Build RCFG
2. Build dominator tree for RCFG
3. Compute dominance frontiers for RCFG
4. Compute $C D(B)=\{Y \mid B \in D F(Y)\}$.

CD(B) contains nodes that are control-dependent on $B$.

## Def-use and Use-def (SSA vs no-SSA)

```
select J
    when x {1\leftarrow1}
    when y {1\leftarrow2}
    when z{1*3}
end
select k
    when x {a \leftarrow i}
    when y {b\leftarrowi}
    when z {c\leftarrow & }
end
```

Original Program


Def-Use Chains for Previous Program


From Wegman et al.
SSA Graph for Previous Program

## Summary

## Complexity:

The conversion to SSA form is done in three steps:
(1) The dominance frontier mapping is constructed from the control flow graph $C F G$ (Section 4.2). Let $C F G$ have $N$ nodes and $E$ edges. Let $D F$ be the mapping from nodes to their dominance frontiers. The time to compute the dominator tree and then the dominance frontiers in $C F G$ is $O\left(E+\sum_{X}|D F(X)|\right)$.
(2) Using the dominance frontiers, the locations of the $\phi$-functions for each variable in the original program are determined (Section 5.1). Let $A_{\text {tot }}$ be the total number of assignments to variables in the resulting program, where each ordinary assignment statement $L H S \leftarrow R H S$ contributes the length of the tuple LHS to $A_{\text {tot }}$, and each $\phi$-function contributes 1 to $A_{\text {tot }}$. Placing $\phi$-functions contributes $O\left(A_{\text {tot }} \times \operatorname{aurg} D F\right)$ to the overall time, where $a v r g D F$ is the weighted average (7) of the sizes $|D F(X)|$.
(3) The variables are renamed (Section 5.2). Let $M_{t o t}$ be the total number of mentions of variables in the resulting program. Renaming contributes $O\left(M_{t o t}\right)$ to the overall time.

## Follow up works:

- A linear time algorithm for placing phi-nodes (POPL 1995) https://dl.acm.org/citation.cfm?id=|99464
- Algorithms for computing the static single assignment form (JACM 2003) Further reading:
- Tiger Book, Chapter 19
- On History: http://citi2.rice.edu/WS07/KennethZadeck.pdf

