
CS 526
Advanced
Compiler
Construction
https://charithm.web.illinois.edu/cs526/sp2024/
(slides adapted from Sasa and Vikram)

STATIC SINGLE ASSIGNMENT

The slides adapted from Vikram Adve

References

Cytron, Ferrante, Rosen, Wegman, and Zadeck,
“Efficiently Computing Static Single Assignment
 Form and the Control Dependence Graph,”
ACM Trans. on Programming Languages and Systems,
13(4), Oct. 1991, pp. 451–490.

Muchnick, Section 8.11 (partially covered).

Engineering a Compiler, Section 5.4.2 (partially covered).

Constructing SSA Form

Simple algorithm
1. insert φ-functions for every variable at every join (the
beginning of CFG nodes with multiple incoming edges)
2. solve reaching definitions
3. rename each use to the def that reaches it (unique)

What’s wrong with this approach?
1. too many φ-functions (precision)
2. too many φ-functions (space)
3. too many φ-functions (time)

Where do we place φ-functions?

V=...; U=...; W=...;
 if (...) then {
 V = ...;
 if (...) {
 U = V + 1;
 } else {
 U = V + 2;
 }

 W = U + 1;
 }

• For V?
• For U?
• For W?

Where do we place φ-functions?

V0=...; U0=...; W0=...;
 if (...) then {
 V1 = ...;
 if (...) {
 U1 = V1 + 1;
 } else {
 U2 = V1 + 2;
 }
 V2=j(V1, V1);U3=j(U1, U2);W1=j(W0, W0)
 W1 = U3 + 1;
 }
 V3=j(V0, V1); U4=j(U0, U3); W2=j(W0, W1)

• For V?
• For U?
• For W?

Intuition for SSA Construction
Informal Conditions

If block X contains an assignment to a variable V, then a
φ-function must be inserted in each block Z such that:
1. there is a non-empty path between X and Z, and

the value of V computed in X reaches Z
2. there is a path from the entry block (s) to Z that does not

go through X
there is a path that does not go through X, so some other value of
V reaches Z along that path(ignore bugs due to uses of uninitialized
variables). So, two values must be merged at X with a φ

3. Z is the first node on the path from X to Z that satisfies
point 2

the φ for the value coming from X is placed in Z and not in
some earlier node on the path

Intuition for SSA Construction
Informal Conditions

Iterating the Placement Conditions:
• After a φ is inserted at Z, the above process must

be repeated for Z because the φ is effectively a new
definition of V.

• For each block X and variable V, there must be at
most one φ for V in X.

This means that the above iterative process can be
done with a single worklist of nodes for each variable V,
initialized to handle all original assignment nodes X
simultaneously.

Minimal SSA

A program is in SSA form if:
• each variable is assigned a value in exactly one

statement
• each use of a variable is dominated by the definition

i.e., the use can refer to a unique name.

Minimal SSA: As few as possible φ-functions,

Pruned SSA: As few as possible φ-functions and no dead
φ-functions (i.e., the defined variable is used later)
• One needs to compute liveness information
• More precise, but requires additional time

SSA Construction Algorithm

Steps:
1. Compute the dominance frontiers*
2. Insert φ-functions
3. Rename the variables

Thm. Any program can be put into minimal SSA
form using the previous algorithm. [Refer to the paper for proof]

Dominance in Flow Graphs (review)

Let d, d1, d2, d3, n be nodes in G.

d dominates n (“d dom n”) iff every path in G from s to n contains d

d properly dominates n (“d pdom n”) if d dominates n and d ≠	n

d is the immediate dominator of n (“d idom n”)
if d is the last proper dominator on any path from initial node to n,

DOM(x) denotes the set of dominators of x,

Dominator tree*: the children of each node d are the nodes n such
that “d idom n” (d immediately dominates n)

Dominance Frontier
The dominance frontier of node X is the set of nodes Y such that
X dominates a predecessor of Y, but X does not properly dominate Y *

DF(X) = {Y | ∃ P ∈ Pred(Y) : X dom P and not (X pdom Y)}

We can split DF(X) in two groups of sets:

 DFlocal(X) ≡ {Y ∈ Succ(X) | not X idom Y}

 DFup(Z) ≡ {Y ∈ DF(Z) | ∃ P. P idom Z and not (P pdomY)}

One can show that:

 DF(X)	 = DFlocal(X) ∪	 (
!∈#$%&'()*(,)

DFup(Z) 	

* child, parent, ancestor, and descendant always refer to the dominator tree.
 predecessor, successor, and path always refer to CFG

From Cytron et al.

Dominance Frontier Algorithm
for each X in a bottom-up traversal of the dominator tree
(visit the node X in the tree after visiting its children):
 DF(X) ← ∅

 for each Y ∈ succ(X) /* local */
 if not X idom Y then
 DF(X) ← DF(X) U {Y}

 for each Z ∈ children(X) /* up */
 for each Y ∈ DF(Z)
 if not X idom Y then
 DF(X) ← DF(X) U {Y}

(The paper also has the argument for correctness)

Dominance and LLVM

SSA Construction Algorithm

Steps:
1. Compute the dominance frontiers
2. Insert φ-functions
3. Rename the variables

Insert φ-functions

Insert φ-functions

Renaming Variables*

Renaming definitions is easy – just keep the counter for
each variable.

To rename each use of V :
(a) Use in non-φ-functions: Refer to immediately
dominating definition of V (+ φ nodes inserted for V).

preorder on Dominator Tree!

(b) Use as a φ-function operand: Refer to the definition
that immediately dominates the node with the incoming
CFG edge (not the node with the φ-function)

rename the φ-operand when processing the predecessor basic block!

* For the full algorithm refer to the paper

CFG?
DT?
DF(B3)?
Insert phi at B3?

Translating Out of SSA Form

Overview:
1. Dead-code elimination (prune dead φs)
2. Replace φ-functions with copies in predecessors
3. Register allocation with copy coalescing

Before Step 2 After Step 2

Control Dependence

Def. Postdomination: node p postdominates a node d iff
all paths to the exit node of the graph starting
at d must go through p

Def. In a CFG, node Y is control-dependent on node B if
• There is a path B,N1,N2, ...,Nk, Y, such that Y

postdominates N1 . . .Nk (possibly empty), and
• Y does not postdominate B

Def. Reverse Control Flow Graph (RCFG) of a CFG has
the same nodes as CFG and has edge Y → X if X → Y is an
edge in CFG.
• p is a postdominator of d iff p dominates d in the RCFG.

Computing Control Dependence

Key observation: Node Y is control-dependent on B iff
B ∈ DF(Y) in RCFG.

Algorithm:
1. Build RCFG
2. Build dominator tree for RCFG
3. Compute dominance frontiers for RCFG
4. Compute CD(B) = {Y | B ∈ DF(Y)}.

CD(B) contains nodes that are control-dependent on B.

Def-use and Use-def (SSA vs no-SSA)

From Wegman et al.

Summary
Complexity:

Follow up works:
• A linear time algorithm for placing phi-nodes (POPL 1995)

https://dl.acm.org/citation.cfm?id=199464
• Algorithms for computing the static single assignment form (JACM 2003)
Further reading:
• Tiger Book, Chapter 19
• On History: http://citi2.rice.edu/WS07/KennethZadeck.pdf

https://dl.acm.org/citation.cfm?id=199464
http://citi2.rice.edu/WS07/KennethZadeck.pdf

