CS 526
Advanced

Compiler
Construction

https://charithm.web.illinois.edu/cs526/sp2024/
(slides adapted from Sasa and Vikram)

STATIC SINGLE ASSIGNMENT

References

Cytron, Ferrante, Rosen,Wegman, and Zadeck,

“Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph,’

ACM Trans. on Programming Languages and System:s,
13(4), Oct. 1991, pp. 451—490.

Muchnick, Section 8.1 1 (partially covered).

Engineering a Compiler, Section 5.4.2 (partially covered).

Constructing SSA Form

Simple algorithm

|.insert @¢-functions for every variable at every join (the
beginning of CFG nodes with multiple incoming edges)

2. solve reaching definitions
3. rename each use to the def that reaches it (unique)

What’s wrong with this approach?
|. too many @-functions (precision)

2. too many @-functions (space)

3. too many @-functions (time)

Where do we place @-functions?

V=...; U=...; W=...; e ForV?
if (...) then { * For U?
Vo= oo ForW?
if (...) A
U=V+ 1;
} else {
U=V + 2;
}
W=U+ 1;

Where do we place @-functions?

VO=...; UB=...; WO=...; e ForV?
if (...) then { e For U?
Vi=...; ForW?
if (...) {
Ul = V1 + 1;
} else {
U2 = V1 + 2;

}
\2=q(VT, V1);U3=p(U1, U2);Wl=g(WO, WO)

Wl = U3 + 1;

}
V3=¢(VO, V1); U4=p(U@, U3); W2=p(We, W1)

Intuition for SSA Construction

Informal Conditions

If block X contains an assignment to a variableV, then a
¢-function must be inserted in each block Z such that:

|. there is a non-empty path between X and Z, and
the value of V computed in X reaches Z
2. there is a path from the entry block (s) to Z that does not
go through X

there is a path that does not go through X, so some other value of
V reaches Z along that path(ignore bugs due to uses of uninitialized
variables). So, two values must be merged at X with a @

3. Zis the first node on the path from X to Z that satisfies
point 2

the @ for the value coming from X is placed in Z and not in
some earlier node on the path

Intuition for SSA Construction

Iterating the Placement Conditions:

* After a @ is inserted at Z, the above process must
be repeated for Z because the @ is effectively a new
definition of V.

 For each block X and variableV, there must be at
most one @ forV in X

This means that the above iterative process can be
done with a single worklist of nodes for each variableV,
initialized to handle all original assignment nodes X
simultaneously.

Minimal SSA

A program is in SSA form if:

* each variable is assigned a value in exactly one
statement

* each use of a variable is dominated by the definition
i.e., the use can refer to a unique name.

Minimal SSA: As few as possible @-functions,

Pruned SSA: As few as possible @-functions and no dead
¢-functions (i.e., the defined variable is used later)

* One needs to compute liveness information
* More precise, but requires additional time

SSA Construction Algorithm

Steps:

|. Compute the dominance frontiers™
2. Insert @-functions

3. Rename the variables

Thm. Any program can be put into minimal SSA
form using the previous algorithm. [refer o the paper for proof

Dominance in Flow Graphs

Let d,dl, d2,d3, n be nodes in G.
d dominates n (“d dom n”) iff every path in G from s to n contains d
d properly dominates n (d pdom n”) if d dominates n and d # n

d is the immediate dominator of n (“d idom n”)
if d is the last proper dominator on any path from initial node to n,

DOM(x) denotes the set of dominators of x,

Dominator tree*: the children of each node d are the nodes n such
that “d idom n” (d immediately dominates n)

Dominance Frontier

The dominance frontier of node X is the set of nodesY such that
X dominates a predecessor of Y, but X does not properly dominate Y *

DF(X) ={Y | 3 P € Pred(Y) : X dom P and not (X pdomY)}

We can split DF(X) in two groups of sets:
DFocai(X) = {Y € Succ(X) | not X idom Y}

DF,(Z) = {Y € DF(Z) | 3 P. P idom Z and not (P pdom Y)}

One can show that:

DF(X) — DFIocaI(X) U U DFup(Z)
Z€eChildren(X)

* child, parent, ancestor, and descendant always refer to the dominator tree.
predecessor, successor, and path always refer to CFG

LEmMMA 1. The dominance frontier equation (4) is correct.

Proor. Because dominance is reflexive, DF, ., (X) S DF(X). Because
dominance is transitive, each child Z of X has DF, (Z) € DF(X). We must
still show that everything in DF(X) has been accounted for. Suppose Y e
DF(X), and let U — Y be an edge such that X dominates U but does not
strictly dominate Y. If U = X, then YeDF, ,(X), and we are done. If
U # X, on the other hand, then there is a child Z of X that dominates U but

cannot strictly dominate Y because X does not strictly dominate Y. This
implies that Y e DF, (Z). U

From Cytron et al.

Dominance Frontier Algorithm

for each X in a bottom-up traversal of the dominator tree

(visit the node X in the tree after visiting its children):
DF(X) «— @

for eachY € succ(X) /* local */
if not X idom Y then
DF(X) < DF(X) U {Y}

for each Z € children(X) /* up */
for eachY € DF(Z)
if not X idom Y then
DF(X) < DF(X) U {Y}

(The paper also has the argument for correctness)

Dominance and LLVM

LLVM mainline

Main Page

File List

Related Pages Modules Namespaces

l

File Members

Dominators.h

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014

//===- Dominators.h - Dominator Info Calculation ---------------- *o C4+ -*-===//
1/

// The LLVM Compiler Infrastructure

//

// This file is distributed under the University of Illinois Open Source

// License. See LICENSE.TXT for details.

74

1/

// This file defines the DominatorTree class, which provides fast and efficient

// dominance queries.
1/
=

1/

Classes Files

DominanceFrontier.h

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039

//===- 1lvm/Analysis/DominanceFrontier.h - Dominator Frontiers --*- C4++ -*-===//
//

// The LLVM Compiler Infrastructure

1/

// This file is distributed under the University of Illinois Open Source

// License. See LICENSE.TXT for details.

1/

e e e /7
1/

// This file defines the DominanceFrontier class, which calculate and holds the

// dominance frontier for a function.

1/

// This should be considered deprecated, don't add any more uses of this data
// structure.

1/

#ifndef LLVM_ANALYSIS_DOMINANCEFRONTIER_H
#define LLVM_ANALYSIS_DOMINANCEFRONTIER_H

#include "1llvm/IR/Dominators.h”
#include <map>
#include <set>

namespace 1lvm {

Scoo S =//
/// DominanceFrontierBase - Common base class for computing forward and inverse
/// dominance frontiers for a function.
11/
template <class BlockT>
class DominanceFrontierBase {
public:
typedef std::set<BlockT *> DomSetType; // Dom set for a bb
typedef std::map<BlockT *, DomSetType> DomSetMapType; // Dom set map

protected:
typedef GraphTraits<BlockT *> BlockTraits;

SSA Construction Algorithm

Steps:
|. Compute the dominance frontiers
»2. Insert ¢-functions

3. Rename the variables

Insert @-functions

for each variable V
HasAlready « ()
EverOnWorkList < ()
WorkList < ()
for each node X that may modify V
EverOnWorkList < EverOnWorkList | J {X}
WorkList < WorkList [J {X}

Insert @-functions

for each variable V
HasAlready « ()
EverOnWorkList < ()
WorkList < ()
for each node X that may modify V
EverOnWorkList < EverOnWorkList |) {X}
WorkList < WorkList [J {X}

while WorkList # 0
remove X from WorkList
for each Y € DF(X)
if Y € HasAlready then
insert a ¢-node for VatyY
HasAlready < HasAlready | J {Y}
if Y ¢ EverOnWorkList then
EverOnWorkList < EverOnWorkList |J {Y}
WorkList < WorkList [{Y}

Renaming Variables™

Renaming definitions is easy — just keep the counter for
each variable.

To rename each use of V:

(a) Use in non-@-functions: Refer to immediately
dominating definition of V (+ ¢ nodes inserted forV).

preorder on Dominator Tree!

(b) Use as a @-function operand: Refer to the definition
that immediately dominates the node with the incoming
CFG edge (not the node with the @-function)

rename the Q-operand when processing the predecessor basic block!

* For the full algorithm refer to the paper

DFoeai(X) = {Y € Suce(X) | not X idom Y} CFG?

Bl X=0
& g (Cowdﬂ} { DFUP(Z) = {Y € DF(Z) | 3 P. Pidom Z and not (P pdom Y)} g:(’B:;);
do % DF(X) = DF,,.(X)u U DFup(Z) Insert Ph| at B3?

D x x /Pic> ZeChildren(X)

do §
“Ba: X=X+ J}ZC>

Twlile (eoud 2)
o X=%X+$30

3 whule (Coud 5>
5

(%5: VEFuvru x

Translating Out of SSA Form

Overview:
|. Dead-code elimination (prune dead @s)
2. Replace @-functions with copies in predecessors

3. Register allocation with copy coalescing

Before Step 2 After Step 2
B, | if(..) B, | if(...)
/
/\ Xog «— 5 X; 3
8, Xo <+ 5 8, X1 3 3, X2 «— Xo 8, Xo — X1
Bal Xy — (3(‘;)(0, X1) Baly fxz

Y — Xo

Control Dependence

Def. Postdomination: node p postdominates a node d iff
all paths to the exit node of the graph starting
at d must go through p

Def.In a CFG, nodeY is control-dependent on node B if

* Thereis a path B,NI,N2,...,Nk, Y, such thatY
postdominates NI ...Nk (possibly empty), and

* Y does not postdominate B

Def. Reverse Control Flow Graph (RCFG) of a CFG has
the same nodes as CFG and has edgeY — X if X - Y is an
edge in CFG.

* pisa postdominator of d iff p dominates d in the RCFG.

Computing Control Dependence

Key observation: Node Y is control-dependent on B iff
B € DF(Y) in RCFG.

Algorithm:

|. Build RCFG
Build dominator tree for RCFG

2.
3. Compute dominance frontiers for RCFG
4. Compute CD(B) ={Y | B € DF(Y)}.

CD(B) contains nodes that are control-dependent on B.

Def-use and Use-def (SSA vs no-SSA)

select)
when x {1+ 1}
when y {1 < 2}
when z {1« 3}
end
select
when
when

{a < i}
©
{c+ 1}

end

Def-Use Chains for Previous Program

N < X w

when

i, < o1y, 1,, 13)

1
@

SSA Graph for Previous Program

Original Program

From Wegman et al.

Summary

Com IeXit . The conversion to SSA form is done in threc steps:

p Y° (1) The dominance frontier mapping is constructed from the control flow
graph CFG (Section 4.2). Let CFG have N nodes and E cdges. Let DF
be the mapping from nodes to their dominance frontiers. The time to
compute the dominator tree and then the dominance frontiers in CFG is
O(E + ¥ x| DF(X)]).

(2) Using the dominance frontiers, the locations of the ¢-functions for each
variable in the original program are determined (Section 5.1). Let A, , be
the total number of assignments to variables in the resulting program,
where each ordinary assignment statement LHS < RHS contributes the
length of the tuple LHS to A,,,, and each ¢-function contributes 1 to
A,,,. Placing ¢-functions contributes O(A,,, X avrgDF) to the overall
time, where avrgDF is the weighted average (7) of the sizes | DF(X)]|.

(3) The variables are renamed (Section 5.2). Let M, , be the total number of
mentions of variables in the resulting program. Renaming contributes
O(M,,,) to the overall time.

Follow up works:

* A linear time algorithm for placing phi-nodes (POPL 1995)
https://dl.acm.org/citation.cfm?id=199464

* Algorithms for computing the static single assignment form (JACM 2003)
Further reading:

* Tiger Book, Chapter |9
* On History: http://citi2.rice.edu/VWWS07/KennethZadeck.pdf

https://dl.acm.org/citation.cfm?id=199464
http://citi2.rice.edu/WS07/KennethZadeck.pdf

