
CS 526
Advanced
Compiler
Construction
https://charithm.web.illinois.edu/cs526/sp2024/
(slides adapted from Sasa and Vikram)

Announcements

• Join CS 526 on CampusWire.
• We will be using it for mini-quizzes starting

from the 3rd week.
• Build LLVM and get familiar with the

infrastructure next week.
• We are using LLVM 8.0.1 for Project 1.
• We may try to upgrade before the project is

released.

We will cover

• Control Flow Graphs
• Dominance
• Loops
• SSA form introduction

CONTROL FLOW ANALYSIS

The slides adapted from Vikram Adve

Flow Graphs

Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite)
directed graph, s ∈ N is a designated “initial” node, and there
is a path from node s to every node n ∈ N.

• An entry node in a flow graph has no predecessors.
• An exit node in a flow graph has no successors.
• There is exactly one entry node, s. We can modify a

general DAG to ensure this. How?

Control Flow Graph (CFG)
Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite)
directed graph, s ∈ N is a designated “initial” node, and there is a
path from node s to every node n ∈ N.

Control Flow Graph (CFG) is a flow graph that represents
all paths (sequences of statements) that might be traversed
during program execution.
• Nodes in CFG are program statements, and edge (S1,S2)

denotes that statement S1 can be followed by S2 in execution.
• In CFG, a node unreachable from s can be safely deleted. Why?
• Control flow graphs are usually sparse. I.e., | A |= O(| N |). In

fact, if only binary branching is allowed | A | ≤ 2 | N |.

Control Flow Graph (CFG)

Basic Block is a sequence of statements S1 ... Sn
such that execution control must reach S1 before
S2, and, if S1 is executed, then S2 . . . Sn are all
executed in that order
• Unless a statement causes the program to halt

Leader is the first statement of a basic block
Maximal Basic Block is a basic block with a
maximum number of statements (n)

Control Flow Graph (CFG)
Let us refine our previous definition

CFG is a directed graph in which:
• Each node is a single basic block
• There is an edge b1 → b2 if block b2 may be

executed after block b1 in some execution

We typically define it for a single procedure

A CFG is a conservative approximation of the
control flow! Why?

Example
Source Code
unsigned fib(unsigned n) {
 int i;
 int f0 = 0, f1 = 1, f2;

 if (n <= 1) return n;

 for (i = 2; i <= n; i++) {
 f2 = f0 + f1;
 f0 = f1;
 f1 = f2;
 }

 return f2;
}

LLVM bitcode (ver 3.9.1)

define i32 @fib(i32 %0) {
 %2 = icmp ult i32 %0, 2
 br i1 %2, label %12, label %3

; <label>:3:
 br label %4

; <label>:4:
 %5 = phi i32 [%8, %4], [1, %3]
 %6 = phi i32 [%5, %4], [0, %3]
 %7 = phi i32 [%9, %4], [2, %3]
 %8 = add i32 %5, %6
 %9 = add i32 %7, 1
 %10 = icmp ugt i32 %9, %0
 br i1 %10, label %11, label %4

; <label>:11:
 br label %12

; <label>:12:
 %13 = phi i32 [%0, %1], [%8, %11]
 ret i32 %13
}

Dominance in Flow Graphs
Let d, d1, d2, d3, n be nodes in G.

d dominates n (“d dom n”) iff every path from s to n
contains d

d properly dominates n if d dominates n and d ≠	n

d is the immediate dominator of n (“d idom n”)
if d is the last proper dominator on any path from initial
node to n,

DOM(x) denotes the set of dominators of x,

Dominator tree: the children of each node d are the
nodes n such that “d idom n” (immediately dominates)

Dominator Properties

Lemma 1: DOM(s) = { s }.
Lemma 2: s dom d, for all nodes d in G.
Lemma 3: The dominance relation on nodes in a flow
graph is a partial ordering
• Reflexive— n dom n is true for all n.
• Antisymmetric — If d dom n, then cannot be n dom d
• Transitive — d1 dom d2 ∧ d2 dom d3 ⇒ d1 dom d3
Lemma 4: The dominators of a node form a list.
Lemma 5: Every node except s has a unique immediate
dominator.

Finding Dominators in a Flow Graph

Input : A flow graph G = (N,A,s).
Output : The sets DOM(node) for each node ∈ N.

Finding Dominators in a Flow Graph

Input : A flow graph G = (N,A,s).
Output : The sets DOM(node) for each node ∈ N.

Initialize

Iterate

Loops

while (b) { … } ⇒	 ?

Loops

The right definition of “loop” is not obvious.

Obviously bad definitions
• Cycle: Not necessarily properly nested or disjoint
• Strongly Connected Components:

Too coarse; no nesting information

What properties of the loops do we want to
extract from CFG?

Natural Loops
Def. Back Edge: An edge n → d where d dom n

Def. Natural Loop: Given a back edge, n → d, the
natural loop corresponding to n → d is the set of
nodes {d + all nodes that can reach n without
going through d}

Def. Loop Header: The node d within the loop that
dominates all nodes in the loop
• Header is unique for each natural loop Why?
• Implies d is the unique entry point into the loop
• Uniqueness is very useful for many optimizations

Natural Loops

Pros:
+ Intuitive, and similar to SCC.
+ Single entry point: “loop header”.
+ Identifies nested loops (if different headers)

Cons:
- Nested loops are not (necessarily) disjoint.
- Some nodes are not part of any natural loop.
- Does not include some cycles in “irreducible” flow
 graphs.

Reducibility of Flow Graphs

Def. Reducible* flow graph: a flow graph G is called
reducible iff we can partition the edges into 2 disjoint sets:
• forward edges: should form a DAG in which every

node is reachable from initial node s (or also header)
• remaining edges must be back edges: i.e., only

those edges n → d such that d dom n

Idea:
Every “cycle” has at least one back edge
⇒ All “cycles” are natural loops
Otherwise graph is called irreducible.

* Well-structured

Alternative to natural Loops

Natural loop
• Defined using dominators

Intervals
• Defined in terms of reachability in flow graph

(e.g. Muchnick, Sections 7.6 and 7.7)
• Main idea: split the flow graph in smaller regions

(abstract nodes) that contain other nodes

STATIC SINGLE ASSIGNMENT

The slides adapted from Vikram Adve

References

Cytron, Ferrante, Rosen, Wegman, and Zadeck,
“Efficiently Computing Static Single Assignment Form
and the Control Dependence Graph,” ACM Trans. on
Programming Languages and Systems, 13(4), Oct. 1991,
pp. 451–490.

Muchnick, Section 8.11 (partially covered).

Engineering a Compiler, Section 5.4.2 (partially
covered).

Some Definitions

Value: expression that cannot be evaluated further
(numbers, words, memory addresses, …)
Storage location: register or memory address

• Machine and virtual registers
• Stack and heap

Variable: named storage location (map from name to address)
Pointer: variable whose value is another memory location
Alias: an alternative name of an entity (a variable, a location, …)

What is SSA Form?

What is intermediate language?

Design tradeoffs:
• Expressive enough to represent source code

information unambiguously
• Efficient for (numerous) optimizations and analyses
• Can easily generate backend code from it

Why do we study SSA ?

What is SSA Form?

(Informally) A program can be converted into SSA form
as follows:
• Each assignment to a variable is given a unique name
• All of the uses reached by that assignment are

renamed.

Easy for straight-line code:
 V ¬ 4
 … ¬ V + 5
 V ¬ 6
 … ¬ V + 7

What is SSA Form?

(Informally) A program can be converted into SSA form
as follows:
• Each assignment to a variable is given a unique name
• All of the uses reached by that assignment are

renamed.

Easy for straight-line code:
 V0 ¬ 4
 … ¬ V0 + 5
 V1 ¬ 6
 … ¬ V1 + 7

SSA Straight-line Code

X = 1;
X = X + 1;
Y = X;

SSA Straight-line Code

X0 = 1;
X1 = X0 + 1;
Y = X1;

SSA Straight-line Code

X = 1;
Y = f(X);
X = Y + X;

SSA Straight-line Code

X0 = 1;
Y0 = f(X0);
X1 = Y0 + X0;

SSA and Branches

if (...)
 X = 42;
else
 X = 7*7;

Y = X;

SSA and Branches

if (...)
 X1 = 42;
else
 X2 = 7*7;
X3 = j(X1, X2)
Y = X;

SSA and Branches

if (...)
 X1 = 42;
else
 X2 = 7*7;
X3 = j(X1, X2)
Y = X3;

SSA and Branches

X = 0;
if (...)
 X = 42;

Y = X;

SSA and Branches

X1 = 0;
if (...)
 X2 = 42;
X3 = j(X1, X2)
Y = X;

SSA and Branches

X1 = 0;
if (...)
 X2 = 42;
X3 = j(X1, X2)
Y = X3;

SSA and Branches

X = 0;
if (...) {
 if (...)
 X = 42;
 else
 X = 7*7;

}

Y = X;

SSA and Branches

X0 = 0;
if (...) {
 if (...)
 X1 = 42;
 else
 X2 = 7*7;
 X3 = j(X1, X2)
}
X4 = j(X0, X3)
Y = X;

SSA and Branches

X0 = 0;
if (...) {
 if (...)
 X1 = 42;
 else
 X2 = 7*7;
 X3 = j(X1, X2)
}
X4 = j(X0, X3)
Y = X4;

SSA and Loops

j=1;

while (j < X)
 ++j;

N = j;

j = 1;

if (j >= X) goto E;

S:
j = j+1;
if (j < X) goto S;

E:
N = j;

SSA and Loops

j=1;

while (j < X)
 ++j;

N = j;

j0 = 1;

if (j0 >= X) goto E;

S:
j = j+1;
if (j < X) goto S;

E:
N = j;

SSA and Loops

j=1;

while (j < X)
 ++j;

N = j;

j0 = 1;

if (j0 >= X) goto E;

S: j1 = j(j0, j2)
j2 = j1+1;
if (j2 < X) goto S;

E:
N = j;

SSA and Loops

j=1;

while (j < X)
 ++j;

N = j;

j0 = 1;

if (j0 >= X) goto E;

S: j1 = j(j0, j2)
j2 = j1+1;
if (j2 < X) goto S;

E: j4 = j(j0, j2)
N = j4;

SSA and Switches

X = 0;
switch (...) of
 a: X = 1;
 b: X = 2;
 c: X = 3;

Y = X;

SSA and Switches

X0 = 0;
switch (...) of
 a: X1 = 1;
 b: X2 = 2;
 c: X3 = 3;

Y = X;

SSA and Switches

X0 = 0;
switch (...) of
 a: X1 = 1;
 b: X2 = 2;
 c: X3 = 3;
X4 = j(X0, X1, X2, X3)
Y = X4;

Definition of φ Function
In a basic block B with N predecessors, P1, P2, . . . , PN,

 X = φ(V1, V2, . . . , VN)

assigns X = Vi if control enters block B from Pi , 1 ≤ i ≤ N

Properties of φ-functions:
• φ is not an executable operation.
• φ has exactly as many arguments as the number of

incoming basic block edges
• Think about the argument Vi as being evaluated on CFG

edge from predecessor Pi to B

Which Variables to Convert?

Convert all variables to SSA form, except . . .
Arrays: Array elements do not have an explicit name
(although note ArraySSA)
Variables that may have aliases: do not have a
unique name
Volatile variables: can be modified “unexpectedly”

E.g., In LLVM, only scalar variables in virtual registers
are in SSA form.

LLVM: Mem2reg
-mem2reg: Promote Memory to Register

“This file promotes memory references to be register references. It promotes
alloca instructions which only have loads and stores as uses. An alloca is
transformed by using dominator frontiers to place phi nodes, then traversing the
function in depth-first order to rewrite loads and stores as appropriate. This is
just the standard SSA construction algorithm to construct “pruned” SSA form.”

...
%6 = alloca i32, align 4

%7 = load i32, i32* %0, align 4
%8 = add nsw i32 1, %7
store i32 %8, i32* %6, align 4
%9 = load i32, i32* %6, align 4
ret i32 %9

%3 = add nsw i32 %0, 1
ret i32 %3

int f(int x) {
 int y = x + 1;
 return y
}

No optimizations

After mem2reg

More Definitions

Use of a variable: A use of variable X is a reference that
may read the value stored in the location named X.

Definition of a variable: A definition (def) of a variable X
is a reference that may store a value into the location
named X. Examples: Assignment; input I/O

Ambiguity of definitions:
Unambiguous definition (must): guaranteed to store to X
Ambiguous definition (may): may store to X
Q. Where does ambiguity come from?
We define ambiguous/unambiguous use similarly.

Def-Use Chains

• Def-use chain: The set of uses reached by a
particular definition.

• Use-def chain: The set of definitions reaching
a particular use

Definition of SSA Form

A program is in SSA form if:
• each variable is assigned a value in

exactly one statement
• each use of a variable is dominated

by the definition

Advantages of SSA Form

Makes def-use and use-def chains explicit:

These chains are foundation of many dataflow optimizations
• We will see some soon!

Compact, flow-sensitive* def-use information
• fewer def-use edges per variable: one per CFG edge

* Takes the order of statements into account

Advantages of SSA Form (cont.)

No anti- and output dependences on SSA variables
• Direct dependence: A=1; B=A+1
• Antidependence: A=1; B=A+1; A=2
• Output dependence: A=1; A=2; B=A+1

Explicit merging of values (φ): key additional
information

Can serve as IR for code transformations (see LLVM)

Cannot
 reoder

Disadvantages of SSA Form

Size of SSA program is O(N2) for an ordinary program
with N variables.

Often not used for structures and arrays
May not be used for scalar variables with aliases

If used as IR, must be converted back to code (Not bad)
Otherwise, must be recomputed frequently (Often bad)

