
CS 526
Advanced
Compiler
Construction
https://charithm.web.illinois.edu/cs526/sp2024/
(slides adapted from Sasa and Vikram)

Goals of the Course

Develop a fundamental understanding of the major
approaches to program analysis and optimization

Understand published research on various novel
compiler techniques

Solve a significant compiler problem by reading the
literature and implementing your solution in LLVM

Learn about current research in compiler technology

Compiler Overview

Program Front-end Optimizer Back-end

Optimizer Transformations
• Automatic Parallelization
• Vectorization
• Cache Management
• Performance Modeling

Intermediate
Code

Object
Code

Intermediate
Code

Code Generation
• Source Code Portability
• Back-end Optimizations
• Static Profiling
• Power Management

Linking/Loading
• Interprocedural optimization
• Load-time optimization
• Security checking

Runtime compilation
• JIT code generation
• Runtime optimization
• Fault tolerance

Compiler Overview

Program Front-end Optimizer Back-end

CS 426 CS 426

Compiler Overview

Program Front-end Optimizer Back-end

CS 426

Vector HW, GPUs

 Program Analysis +
 Program Transformation

Why is Optimization Important?
For source-level programming languages

Liberate programmer from machine-related issues and enable
portable programming without unduly sacrificing performance.

John Backus on the first FORTRAN compiler:
“It is our belief that if FORTRAN, during its first months, were to translate any
reasonable scientific program into an object program only half as fast as
its hand-coded counterpart, then acceptance of our system would be in
serious danger.”
“To this day I believe that our emphasis on object program efficiency
rather than on language design was basically correct. I believe that had
we failed to produce efficient programs, the widespread use of languages like
FORTRAN would have been seriously delayed.”

-- John Backus, Fortran I, II and III, Annals of the History of Computing}, vol. 1, no. 1, July 1979

Why is Optimization Important?
For expressive language features

Allow programmer to focus on clean, easy-to-understand
programs; avoid detailed hand-optimizations:

• Expression simplification: Constant folding, associativity,
commutativity

• Redundancy elimination: Loop-invariant code motion, common
subexpressions, equivalent subexpressions

• Dead code elimination: Unreachable code, unused computations
• Control flow simplification: Branch folding, branch elimination
• Procedure call elimination: Single-use functions, frequent

function calls
• Bounds check elimination: Array expressions

Why is Optimization Important?
Because Moore’s Law is Dead

How are we
going to leverage
new post-Moore
architectures?

Why is Optimization Important?
For portable performance

Maintain performance across a wide range of computing devices
that include CPUs, GPUs and various Domain Specific
Accelerators

Why is Optimization Important?
For new applications

Wearable computing (e-textiles) Analog nano-computing (Bio)

Edge intelligence

Self
Driving
Cars

Why is Optimization Important?
To Understand

In discussing any optimization, look for three properties:

Safety — Does it change the results of the program?
 What opportunities exist that are safe?

Profitability — Is it expected to speed up execution?

Optimality — How can we find the best optimization?
 Or come to the close it?

Why is Optimization Important?
To Understand

In discussing any optimization, look for three properties:

Safety — Transformation Space (Analysis)
Profitability — Cost Model (Analysis)
Optimality — Optimization Strategy (Transformation)

Transformation
Space

Optimization
Strategy

Cost Model

Type 1 Optimizations

Optimizations that are generally always profitable (e.g., Dead
Code Elimination, Constant Propagation)

Safety — Transformation Space (Analysis)
Profitability — Cost Model (Analysis)
Optimality — Optimization Strategy (Transformation)

Transformation
Space

Optimization
Strategy

Cost Model

Challenging! Trivial

Type 1I Optimizations

Optimizations with mutually exclusive opportunities with
varying profitability (e.g., Vectorization, Loop Transformations)

Safety — Transformation Space (Analysis)
Profitability — Cost Model (Analysis)
Optimality — Optimization Strategy (Transformation)

Transformation
Space

Optimization
Strategy

Cost Model

Most
Research!

Challenging! Most
Research!

COURSE TOPICS
CS 526

List of Topics (Part 1)

The order of topics is subject to change

Static Program Analysis
• Natural loops, intervals, reducibility (refresher)
• Static single assignment (SSA)
• Dataflow analysis
• Pointer analysis
• Dependence analysis
• Interprocedural analysis

List of Topics (Part 1I)

Optimizations
• Code motions and redundancy elimination
• Induction variable optimizations
• Loop transformations and memory hierarchy

optimizations
• Basic interprocedural optimizations
Advanced topics (NEW!)
• Vectorization
• Tensor Compilation
• GPU Compilation
• ML in Compilers

Compiler Overview

Program Front-end Optimizer Back-end

Topics We Will Not Cover

• Back-end code generation, e.g., scheduling,
allocation, software pipelining (CS 426)

• Automatic parallelization (CS 598dp)

• ML for Compilers and Architecture (CS 598cm)

• Program verification (CS 476, CS 477…)

• LLVM hacking (although we have the project J)

COURSE LOGISTICS
CS 526

Schedule

Twice a week – Tuesdays and Thursdays 12:30 pm-1:45 pm
All classes will be in person

Course Format
• Lectures – most of the weeks (maybe guest)
• Projects – two programming assignments (LLVM)
• Exams – midterm and final exams; both take home
• Mini-quizzes – before (almost) every lecture (starting

from week 3)

Prerequisites

Helpful (I will assume you took it):
Basic compilers course (e.g., CS 426)

Also helpful:
Basic programming languages course (e.g., CS 421)

Basic computer architecture (e.g., CS 233)

Most important: commitment to learn as you go

Grading

Mini-quizzes 10%

Optimization Project 10%

Midterm Quiz 20%

Final Quiz 20%

Open-ended Project 40%

Miniquizzes

Test background knowledge
• 5 minutes at the beginning of each class
• Concept from compiler theory, something that was

covered in previous courses or lectures
• We will use CampusWire polls to conduct the quizzes
• We will discuss the solution immediately afterwards

Each miniquiz is worth ~0.67% (up to 10%).
• The main purpose is to bring everyone to the same page

before we start the discussions
• In total ~20 quizzes; can miss 5 without penalty

Exams

First
• Take home (March 7; before the break)
• Focuses on analysis (SSA, dataflow, dependency)
• 75 minutes (within 24 hour time)

Second
• Take home (April 30)
• Pointer analysis, optimization, and special topics
• It also includes the materials from the first one
• 90 minutes (within 24 hour time)

Books
No official book, but many times you will need
to look into one of these:

Available online via
Illinois University Library

And More Books
No official book, but many times you will need
to look into one of these:

Available online via Publisher

And More …
We will point our several classical papers that introduced
the analysis and/or optimization techniques

To access the papers from ACM/IEEE prepend the link with
the following:

http://www.library.illinois.edu/proxy/go.php?url=

Projects

Gain experience solving existing compiler problems
• Read the literature for the problems
• Find or develop a solution
• Implement the solution in a realistic compiler
• Test it on realistic benchmarks

Projects

P1 – Warm-up exercise:
• Individual, ~2 weeks but do it sooner
• Scalar replacement of aggregates via SSA

(Muchnick, Chapter 12)
• Goal: become familiar with the infrastructure

P2 – Main problem
• Groups of two, ~12 weeks, also do it sooner!
• Choose and solve a harder problem

(Suggestions coming soon)

Infrastructure

LLVM: Low Level Virtual Machine http://llvm.org

• Virtual instruction set: RISC-like, SSA-form

• Powerful link-time (interprocedural) optimization system

• Many front-ends: C/C++, D, Fortran, Julia, Haskell,
Objective-C, OpenMP, OpenCL, Python, Swift, ...

• Software: 1.3M+ lines of C++

• Open source: In use at many universities and major
companies

http://llvm.org/

Infrastructure

Prepare for the project, during next week:
Read LLVM Documentation at http://llvm.org/docs:
Introduction to the LLVM Compiler Infrastructure

Follow instructions in the Getting Started and
Writing an LLVM Pass guides to:
 (a) Download LLVM, with Clang and test-suite
 (b) Do a full build (no need to run "make install")
 (c) Compile and run the “Hello” pass

Install on your EWS or on Campus Cluster: ssh
<netid>@linux.ews.illinois.edu

Get in Touch

Email: charithm@illinois.edu
• Please include “[CS 526]” in the subject line

CampusWire: please register as most announcements
will be using this.

Office: Siebel Center, office 4118

Office Hours:
• By appointment (send me an email)
• I am typically free right after the class
• We can organize dedicated office hours before the

exams

mailto:misailo@illinois.edu

QUESTIONS SO FAR?
CS 526

