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Goals of the Course

Develop a fundamental understanding of the major 
approaches to program analysis and optimization

Understand published research on various novel 
compiler techniques

Solve a significant compiler problem by reading the 
literature and implementing your solution in LLVM

Learn about current research in compiler technology



Compiler Overview

Program Front-end Optimizer Back-end

Optimizer Transformations
• Automatic Parallelization
• Vectorization
• Cache Management
• Performance Modeling

Intermediate 
Code

Object 
Code

Intermediate 
Code

Code Generation
• Source Code Portability
• Back-end Optimizations
• Static Profiling
• Power Management

Linking/Loading
• Interprocedural optimization
• Load-time optimization
• Security checking

Runtime compilation
• JIT code generation
• Runtime optimization
• Fault tolerance
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Compiler Overview

Program Front-end Optimizer Back-end

CS 426

Vector HW, GPUs



  Program Analysis + 
  Program Transformation



Why is Optimization Important?
For source-level programming languages

Liberate programmer from machine-related issues and enable 
portable programming without unduly sacrificing performance.

John Backus on the first FORTRAN compiler:
“It is our belief that if FORTRAN, during its first months, were to translate any 
reasonable scientific program into an object program only half as fast as 
its hand-coded counterpart, then acceptance of our system would be in 
serious danger.”
“To this day I believe that our emphasis on object program efficiency 
rather than on language design was basically correct.  I believe that had 
we failed to produce efficient programs, the widespread use of languages like 
FORTRAN would have been seriously delayed.”

-- John Backus, Fortran I, II and III, Annals of the History of Computing}, vol. 1, no. 1, July 1979



Why is Optimization Important?
For expressive language features

Allow programmer to focus on clean, easy-to-understand 
programs; avoid detailed hand-optimizations:

• Expression simplification: Constant folding, associativity, 
commutativity

• Redundancy elimination: Loop-invariant code motion, common 
subexpressions, equivalent subexpressions

• Dead code elimination: Unreachable code, unused computations
• Control flow simplification: Branch folding, branch elimination
• Procedure call elimination: Single-use functions, frequent 

function calls
• Bounds check elimination: Array expressions



Why is Optimization Important?
Because Moore’s Law is Dead

How are we
going to leverage
new post-Moore
architectures?



Why is Optimization Important?
For portable performance

Maintain performance across a wide range of computing devices 
that include CPUs, GPUs and various Domain Specific 
Accelerators



Why is Optimization Important?
For new applications

Wearable computing (e-textiles) Analog nano-computing (Bio)

Edge intelligence

Self
Driving 
Cars



Why is Optimization Important?
To Understand

In discussing any optimization, look for three properties:

Safety — Does it change the results of the program?
                What opportunities exist that are safe?

Profitability — Is it expected to speed up execution?
                         
Optimality — How can we find the best optimization? 
                        Or come to the close it?



Why is Optimization Important?
To Understand

In discussing any optimization, look for three properties:

Safety — Transformation Space (Analysis)
Profitability — Cost Model (Analysis)
Optimality — Optimization Strategy (Transformation)

Transformation 
Space

Optimization 
Strategy

Cost Model



Type 1 Optimizations

Optimizations that are generally always profitable (e.g., Dead 
Code Elimination, Constant Propagation)

Safety — Transformation Space (Analysis)
Profitability — Cost Model (Analysis)
Optimality — Optimization Strategy (Transformation)

Transformation 
Space

Optimization 
Strategy

Cost Model

Challenging! Trivial



Type 1I Optimizations

Optimizations with mutually exclusive opportunities with 
varying profitability (e.g., Vectorization, Loop Transformations)

Safety — Transformation Space (Analysis)
Profitability — Cost Model (Analysis)
Optimality — Optimization Strategy (Transformation)

Transformation 
Space

Optimization 
Strategy

Cost Model

Most 
Research!

Challenging! Most 
Research!



COURSE  TOPICS
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List of Topics (Part 1)

The order of topics is subject to change

Static Program Analysis
• Natural loops, intervals, reducibility (refresher)
• Static single assignment (SSA)
• Dataflow analysis
• Pointer analysis
• Dependence analysis
• Interprocedural analysis



List of Topics (Part 1I)

Optimizations
• Code motions and redundancy elimination
• Induction variable optimizations
• Loop transformations and memory hierarchy 

optimizations
• Basic interprocedural optimizations
Advanced topics (NEW!)
• Vectorization
• Tensor Compilation
• GPU Compilation
• ML in Compilers



Compiler Overview

Program Front-end Optimizer Back-end



Topics We Will Not Cover

• Back-end code generation, e.g., scheduling, 
allocation, software pipelining (CS 426)

• Automatic parallelization (CS 598dp)

• ML for Compilers and Architecture (CS 598cm)

• Program verification (CS 476, CS 477…)

• LLVM hacking (although we have the project J)



COURSE LOGISTICS
CS 526 



Schedule

Twice a week – Tuesdays and Thursdays 12:30 pm-1:45 pm
All classes will be in person

Course Format
• Lectures – most of the weeks (maybe guest) 
• Projects – two programming assignments (LLVM)
• Exams – midterm and final exams; both take home
• Mini-quizzes – before (almost) every lecture (starting 

from week 3)
 



Prerequisites

Helpful (I will assume you took it):
Basic compilers course (e.g., CS 426)

Also helpful: 
Basic programming languages course (e.g., CS 421)

Basic computer architecture (e.g., CS 233)

Most important: commitment to learn as you go



Grading

Mini-quizzes 10%

Optimization Project 10% 

Midterm Quiz 20%

Final Quiz 20%

Open-ended Project 40%



Miniquizzes

Test background knowledge 
• 5 minutes at the beginning of each class
• Concept from compiler theory, something that was 

covered in previous courses or lectures
• We will use CampusWire polls to conduct the quizzes
• We will discuss the solution immediately afterwards
  
Each miniquiz is worth ~0.67% (up to 10%). 
• The main purpose is to bring everyone to the same page 

before we start the discussions
• In total ~20 quizzes; can miss 5 without penalty



Exams

First
• Take home (March 7; before the break)
• Focuses on analysis (SSA, dataflow, dependency)
• 75 minutes (within 24 hour time)

Second
• Take home (April 30)
• Pointer analysis, optimization, and special topics
• It also includes the materials from the first one
• 90 minutes (within 24 hour time)



Books
No official book, but many times you will need 
to look into one of these:

Available online via 
Illinois University Library



And More Books
No official book, but many times you will need 
to look into one of these:

Available online via Publisher



And More …
We will point our several classical papers that introduced 
the analysis and/or optimization techniques

To access the papers from ACM/IEEE prepend the link with 
the following:

http://www.library.illinois.edu/proxy/go.php?url=



Projects

Gain experience solving existing compiler problems
• Read the literature for the problems
• Find or develop a solution
• Implement the solution in a realistic compiler
• Test it on realistic benchmarks



Projects

P1 – Warm-up exercise:
• Individual, ~2 weeks but do it sooner 
• Scalar replacement of aggregates via SSA

(Muchnick, Chapter 12)
• Goal: become familiar with the infrastructure

P2 – Main problem 
• Groups of two, ~12 weeks, also do it sooner!
• Choose and solve a harder problem

(Suggestions coming soon)



Infrastructure

LLVM: Low Level Virtual Machine http://llvm.org 

• Virtual instruction set: RISC-like, SSA-form

• Powerful link-time (interprocedural) optimization system

• Many front-ends: C/C++, D, Fortran, Julia, Haskell, 
Objective-C, OpenMP, OpenCL, Python, Swift, ...

• Software: 1.3M+ lines of C++

• Open source: In use at many universities and major 
companies

http://llvm.org/


Infrastructure

Prepare for the project, during next week:
Read LLVM Documentation at http://llvm.org/docs:
Introduction to the LLVM Compiler Infrastructure

Follow instructions in the Getting Started and 
Writing an LLVM Pass guides to:
 (a) Download LLVM, with Clang and test-suite 
 (b) Do a full build (no need to run "make install")
 (c) Compile and run the “Hello” pass

Install on your EWS or on Campus Cluster:  ssh 
<netid>@linux.ews.illinois.edu



Get in Touch

Email: charithm@illinois.edu
• Please include “[CS 526]” in the subject line

CampusWire: please register as most announcements 
will be using this.

Office: Siebel Center, office 4118

Office Hours: 
• By appointment (send me an email)
• I am typically free right after the class
• We can organize dedicated office hours before the 

exams 

mailto:misailo@illinois.edu


QUESTIONS SO FAR?
CS 526


